Solveeit Logo

Question

Question: The system of linear equations: \(\begin{aligned} & x+y+z=2 \\\ & 2x+3y+2z=5 \\\ & 2x...

The system of linear equations:
x+y+z=2 2x+3y+2z=5 2x+3y+(a21)z=a+1 \begin{aligned} & x+y+z=2 \\\ & 2x+3y+2z=5 \\\ & 2x+3y+\left( {{a}^{2}}-1 \right)z=a+1 \\\ \end{aligned}
(A) Has infinitely many solutions for a=4
(B) Is consistent when a=3\left| a \right|=\sqrt{3}
(C) Is consistent when a=4\left| a \right|=4
(D) Has a unique solution for a=3\left| a \right|=\sqrt{3}

Explanation

Solution

We start solving this problem by considering all the three given equations and then we apply Cramer’s rule to find D,D1D,{{D}_{1}}. We start solving the determinant DD by converting the column C2{{C}_{2}} as C2C1{{C}_{2}}-{{C}_{1}} and the column C3{{C}_{3}}as C3C1{{C}_{3}}-{{C}_{1}} and then we solve the obtained determinant to get DD. Then we start solving the determinant D1{{D}_{1}} by converting the column C3{{C}_{3}}as C3C2{{C}_{3}}-{{C}_{2}} and the column C2{{C}_{2}} as C212C1{{C}_{2}}-\dfrac{1}{2}{{C}_{1}} and then we solve the obtained determinant to get D1{{D}_{1}}. Then we substitute the value 4 for aa in the determinant D1{{D}_{1}} to know whether it has infinitely many solutions for a=4a=4 as mentioned in option (A). Then we check whether it is consistent or inconsistent.

Complete step-by-step solution:
Let us consider the given equations,
x+y+z=2 2x+3y+2z=5 2x+3y+(a21)z=a+1 \begin{aligned} & x+y+z=2 \\\ & 2x+3y+2z=5 \\\ & 2x+3y+\left( {{a}^{2}}-1 \right)z=a+1 \\\ \end{aligned}
Let us consider the Cramer’s method, that is, if the system of linear equations are
a1x+b1y+c1z=d1 a2x+b2y+c2z=d2 a3x+b3y+c3z=d3 \begin{aligned} & {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z={{d}_{1}} \\\ & {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z={{d}_{2}} \\\ & {{a}_{3}}x+{{b}_{3}}y+{{c}_{3}}z={{d}_{3}} \\\ \end{aligned} , then
D=a1b1c1 a2b2c2 a3b3c3 , D1=d1b1c1 d2b2c2 d3b3c3 , D2=a1d1c1 a2d2c2 a3d3c3 , D3=a1b1d1 a2b2d2 a3b3d3  \begin{aligned} & D=\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\\ \end{matrix} \right|, \\\ & {{D}_{1}}=\left| \begin{matrix} {{d}_{1}} & {{b}_{1}} & {{c}_{1}} \\\ {{d}_{2}} & {{b}_{2}} & {{c}_{2}} \\\ {{d}_{3}} & {{b}_{3}} & {{c}_{3}} \\\ \end{matrix} \right|, \\\ & {{D}_{2}}=\left| \begin{matrix} {{a}_{1}} & {{d}_{1}} & {{c}_{1}} \\\ {{a}_{2}} & {{d}_{2}} & {{c}_{2}} \\\ {{a}_{3}} & {{d}_{3}} & {{c}_{3}} \\\ \end{matrix} \right|, \\\ & {{D}_{3}}=\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{d}_{1}} \\\ {{a}_{2}} & {{b}_{2}} & {{d}_{2}} \\\ {{a}_{3}} & {{b}_{3}} & {{d}_{3}} \\\ \end{matrix} \right| \\\ \end{aligned}
Let us consider the different conditions for consistent and inconsistent solutions.
(i) If D0D\ne 0 and at least one of the D1,D2,D3{{D}_{1}},{{D}_{2}},{{D}_{3}} is not equal to zero, then the system of equations has unique solution. (Consistent)
(ii) If D=0,D1=0,D2=0,D3=0D=0,{{D}_{1}}=0,{{D}_{2}}=0,{{D}_{3}}=0 , then the system of equations has infinitely many solutions. (Consistent)
(iii) If D=0D=0 and at least one of the D1,D2,D3{{D}_{1}},{{D}_{2}},{{D}_{3}} is not equal to zero, then the system of equations has no solution. (Inconsistent)
Let us now find the determinant DD , we get,
D=111 232 23a21 D=\left| \begin{matrix} 1 & 1 & 1 \\\ 2 & 3 & 2 \\\ 2 & 3 & {{a}^{2}}-1 \\\ \end{matrix} \right|
Now, let us convert the column C2{{C}_{2}} as C2C1{{C}_{2}}-{{C}_{1}} and the column C3{{C}_{3}}as C3C1{{C}_{3}}-{{C}_{1}}, we get,
D=11111 23222 232a212  D=100 210 21a23  \begin{aligned} & D=\left| \begin{matrix} 1 & 1-1 & 1-1 \\\ 2 & 3-2 & 2-2 \\\ 2 & 3-2 & {{a}^{2}}-1-2 \\\ \end{matrix} \right| \\\ & D=\left| \begin{matrix} 1 & 0 & 0 \\\ 2 & 1 & 0 \\\ 2 & 1 & {{a}^{2}}-3 \\\ \end{matrix} \right| \\\ \end{aligned}
Let us expand the above determinant along R1{{R}_{1}} , we get,
D=1(a230)0+0 D=a23 \begin{aligned} & D=1\left( {{a}^{2}}-3-0 \right)-0+0 \\\ & D={{a}^{2}}-3 \\\ \end{aligned}
Now, we find the determinant D1{{D}_{1}}.
D1=211 532 a+13a21 {{D}_{1}}=\left| \begin{matrix} 2 & 1 & 1 \\\ 5 & 3 & 2 \\\ a+1 & 3 & {{a}^{2}}-1 \\\ \end{matrix} \right|
Let us now convert the column C3{{C}_{3}} as C3C2{{C}_{3}}-{{C}_{2}} and the column C2{{C}_{2}} as C212C1{{C}_{2}}-\dfrac{1}{2}{{C}_{1}} , we get,
D1=212211 535223 a+13a+12a213  D1=200 5121 a+152a2a24  \begin{aligned} & {{D}_{1}}=\left| \begin{matrix} 2 & 1-\dfrac{2}{2} & 1-1 \\\ 5 & 3-\dfrac{5}{2} & 2-3 \\\ a+1 & 3-\dfrac{a+1}{2} & {{a}^{2}}-1-3 \\\ \end{matrix} \right| \\\ & {{D}_{1}}=\left| \begin{matrix} 2 & 0 & 0 \\\ 5 & \dfrac{1}{2} & -1 \\\ a+1 & \dfrac{5}{2}-\dfrac{a}{2} & {{a}^{2}}-4 \\\ \end{matrix} \right| \\\ \end{aligned}
Now, we expand the determinant D1{{D}_{1}} along R1{{R}_{1}} , we get,
D1=2[12(a24)+1(52a2)] D1=a24+5a D1=a2a+1 \begin{aligned} & {{D}_{1}}=2\left[ \dfrac{1}{2}\left( {{a}^{2}}-4 \right)+1\left( \dfrac{5}{2}-\dfrac{a}{2} \right) \right] \\\ & {{D}_{1}}={{a}^{2}}-4+5-a \\\ & {{D}_{1}}={{a}^{2}}-a+1 \\\ \end{aligned}
Now, let us substitute 3\sqrt{3} in DD and D1{{D}_{1}} , we get,
D=(3)23 D=33 D=0 \begin{aligned} & D={{\left( \sqrt{3} \right)}^{2}}-3 \\\ & D=3-3 \\\ & D=0 \\\ \end{aligned}
And
D1=33+1 D1=43 D10 \begin{aligned} & {{D}_{1}}=3-\sqrt{3}+1 \\\ & {{D}_{1}}=4-\sqrt{3} \\\ & {{D}_{1}}\ne 0 \\\ \end{aligned}
Therefore, the given system of linear equations has no solution when a=3\left| a \right|=\sqrt{3}.
Now, let us substitute 44 in DD and D1{{D}_{1}} , we get,
D=(4)23 D=163 D=13D0 \begin{aligned} & D={{\left( 4 \right)}^{2}}-3 \\\ & D=16-3 \\\ & D=13\Rightarrow D\ne 0 \\\ \end{aligned}
And
D1=164+1 D1=13 D1=13D10 \begin{aligned} & {{D}_{1}}=16-4+1 \\\ & {{D}_{1}}=13 \\\ & {{D}_{1}}=13\Rightarrow {{D}_{1}}\ne 0 \\\ \end{aligned}
So, the given system of linear equations has unique solution when a=4\left| a \right|=4.
Therefore, the given system of linear equations is consistent when a=4\left| a \right|=4.
Hence, the answer is an option (C).

Note: The possibilities for making mistakes in this type of problems are one may make a mistake by converting the column or row while finding out the determinant, in a wrong way. One must know which column or row should be converted by which process and one must also know how to expand the determinant through any row or column for easy calculation.