Solveeit Logo

Question

Question: The system of equations $x_1 + 2x_2 + 3x_3 = \lambda x_1$, $3x_1 + x_2 + 2x_3 = \lambda x_2$, $2x...

The system of equations

x1+2x2+3x3=λx1x_1 + 2x_2 + 3x_3 = \lambda x_1,

3x1+x2+2x3=λx23x_1 + x_2 + 2x_3 = \lambda x_2,

2x1+3x2+x3=λx32x_1 + 3x_2 + x_3 = \lambda x_3 can possess a non-trivial solution then λ=...\lambda =...

A

1

B

2

C

3

D

6

Answer

6

Explanation

Solution

The given system of equations can be written in matrix form as Ax=0Ax = 0, where x=(x1x2x3)x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} and AA is the coefficient matrix:

A=(1λ2331λ2231λ)A = \begin{pmatrix} 1-\lambda & 2 & 3 \\ 3 & 1-\lambda & 2 \\ 2 & 3 & 1-\lambda \end{pmatrix}

A homogeneous system of linear equations Ax=0Ax = 0 has a non-trivial solution if and only if the determinant of the coefficient matrix AA is zero, i.e., det(A)=0\det(A) = 0.

Calculating the determinant of AA and setting it to zero allows us to solve for λ\lambda.

det(A)=(1λ)1λ231λ23221λ+331λ23\det(A) = (1-\lambda) \begin{vmatrix} 1-\lambda & 2 \\ 3 & 1-\lambda \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 \\ 2 & 1-\lambda \end{vmatrix} + 3 \begin{vmatrix} 3 & 1-\lambda \\ 2 & 3 \end{vmatrix}

det(A)=(1λ)[(1λ)26]2[3(1λ)4]+3[92(1λ)]\det(A) = (1-\lambda)[(1-\lambda)^2 - 6] - 2[3(1-\lambda) - 4] + 3[9 - 2(1-\lambda)]

det(A)=(1λ)(λ22λ5)2(13λ)+3(7+2λ)\det(A) = (1-\lambda)(\lambda^2 - 2\lambda - 5) - 2(-1 - 3\lambda) + 3(7 + 2\lambda)

det(A)=λ3+3λ2+15λ+18\det(A) = -\lambda^3 + 3\lambda^2 + 15\lambda + 18

Setting det(A)=0\det(A) = 0, we get:

λ3+3λ2+15λ+18=0-\lambda^3 + 3\lambda^2 + 15\lambda + 18 = 0

λ33λ215λ18=0\lambda^3 - 3\lambda^2 - 15\lambda - 18 = 0

By testing the given options, we find that λ=6\lambda = 6 is a root of this equation:

633(6)215(6)18=2161089018=06^3 - 3(6)^2 - 15(6) - 18 = 216 - 108 - 90 - 18 = 0

Therefore, the system of equations has a non-trivial solution when λ=6\lambda = 6.