Solveeit Logo

Question

Question: The system of equations $kx + y + z = 1$ $x + ky + z = k$ $x + y + zk = k^2$ has **no solution**, ...

The system of equations

kx+y+z=1kx + y + z = 1 x+ky+z=kx + ky + z = k x+y+zk=k2x + y + zk = k^2

has no solution, if k is equal to

A

1

B

-2

C

2

D

-1

Answer

-2

Explanation

Solution

The given system of linear equations can be represented in matrix form AX=BAX = B, where: A=(k111k111k)A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}, X=(xyz)X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, B=(1kk2)B = \begin{pmatrix} 1 \\ k \\ k^2 \end{pmatrix}.

A system of linear equations AX=BAX = B has no solution if det(A)=0\det(A) = 0 and the rank of the augmented matrix [AB][A|B] is greater than the rank of the coefficient matrix AA.

First, we calculate the determinant of the coefficient matrix AA: det(A)=k(k21)1(k1)+1(1k)\det(A) = k(k^2 - 1) - 1(k - 1) + 1(1 - k) det(A)=k(k1)(k+1)(k1)(k1)\det(A) = k(k-1)(k+1) - (k-1) - (k-1) det(A)=(k1)[k(k+1)11]\det(A) = (k-1) [k(k+1) - 1 - 1] det(A)=(k1)[k2+k2]\det(A) = (k-1) [k^2 + k - 2] det(A)=(k1)(k+2)(k1)\det(A) = (k-1) (k+2)(k-1) det(A)=(k1)2(k+2)\det(A) = (k-1)^2 (k+2)

For the system to have no solution or infinitely many solutions, det(A)\det(A) must be zero. det(A)=0    (k1)2(k+2)=0\det(A) = 0 \implies (k-1)^2 (k+2) = 0 This gives k=1k=1 or k=2k=-2.

Case 1: k=1k=1 If k=1k=1, the system becomes: x+y+z=1x + y + z = 1 x+y+z=1x + y + z = 1 x+y+z=1x + y + z = 1 This system has infinitely many solutions.

Case 2: k=2k=-2 If k=2k=-2, the system becomes: 2x+y+z=1-2x + y + z = 1 x2y+z=2x - 2y + z = -2 x+y2z=4x + y - 2z = 4

The augmented matrix is: [AB]=(211112121124)[A|B] = \begin{pmatrix} -2 & 1 & 1 & | & 1 \\ 1 & -2 & 1 & | & -2 \\ 1 & 1 & -2 & | & 4 \end{pmatrix}

Performing row operations: (121203330336)\begin{pmatrix} 1 & -2 & 1 & | & -2 \\ 0 & -3 & 3 & | & -3 \\ 0 & 3 & -3 & | & 6 \end{pmatrix} (after swapping R1,R2R_1, R_2 and applying R2R2+2R1R_2 \to R_2 + 2R_1, R3R3R1R_3 \to R_3 - R_1) (121201110003)\begin{pmatrix} 1 & -2 & 1 & | & -2 \\ 0 & 1 & -1 & | & 1 \\ 0 & 0 & 0 & | & 3 \end{pmatrix} (after R2R2/(3)R_2 \to R_2 / (-3) and R3R33R2R_3 \to R_3 - 3R_2)

The rank of AA is 2, and the rank of [AB][A|B] is 3. Since rank(A)rank([AB])\text{rank}(A) \neq \text{rank}([A|B]), the system has no solution for k=2k=-2.