Solveeit Logo

Question

Question: The system of equations \(\lambda x + y + z = 0,\) \(- x + \lambda y + z = 0,\) \(- x - y + \lambda ...

The system of equations λx+y+z=0,\lambda x + y + z = 0, x+λy+z=0,- x + \lambda y + z = 0, xy+λz=0- x - y + \lambda z = 0, will have a non zero solution if real values of λ\lambdaare given by.

A

0

B

1

C

3

D

3\sqrt{3}

Answer

0

Explanation

Solution

Accordingly,

\lambda & 1 & 1 \\ - 1 & \lambda & 1 \\ - 1 & - 1 & \lambda \end{matrix} \right| = 0 \Rightarrow \lambda^{3} + 3\lambda = 0$$ Therefore $\lambda = 0$, since $\lambda = i\sqrt{3}$does not exist.