Solveeit Logo

Question

Mathematics Question on Determinants

The system of equations αx+y+z=α1\alpha \, x + y + z = \alpha - 1 x+αy+z=α1x + \alpha y + z = \alpha - 1 x+y+αz=α1x + y + \alpha z = \alpha - 1 has infinite solutions, if α\alpha is

A

-2

B

either - 2 or 1

C

not - 2

D

1

Answer

-2

Explanation

Solution

α x+y+z=α1\alpha \ x + y + z = \alpha - 1 x+αy+z=α1x + \alpha y + z = \alpha - 1 x+y+αz=α1x + y + \alpha z = \alpha - 1 Δ=α11 1α1 11α\Delta = \begin{vmatrix}\alpha&1&1\\\ 1 &\alpha&1\\\ 1&1&\alpha\end{vmatrix} =α(α21)1(α1)+1(1α)= \alpha\left(\alpha ^{2} - 1\right)-1\left(\alpha -1\right)+1\left(1-\alpha \right) =α(α1)(α+1)1(α1)1(α1)= \alpha \left(\alpha -1\right)\left(\alpha +1\right)-1\left(\alpha -1\right)-1\left(\alpha -1\right) For infinite solutions ,Δ=0, \Delta = 0 (α1)[α2+α11]=0 \Rightarrow \left(\alpha -1\right)\left[\alpha ^{2}+\alpha -1-1\right]=0 (α1)[α2+α2]=0\Rightarrow \left(\alpha -1\right)\left[\alpha ^{2} +\alpha -2\right] = 0 (α1)[α2+2αα2]=0\Rightarrow \left(\alpha -1\right)\left[\alpha ^{2}+2\alpha -\alpha -2\right]=0 (α1)[α(α+2)1(α+2)]=0 \Rightarrow\left(\alpha -1\right)\left[\alpha \left(\alpha +2\right)-1\left(\alpha +2\right)\right]= 0 (α1)=0,α+2=0\left(\alpha -1\right) = 0, \alpha +2=0 α=2,1;\Rightarrow\alpha =-2,1; But α1, \alpha \ne 1 , α=2\therefore \alpha = -2