Question
Mathematics Question on Determinants
The system of equations αx+y+z=α−1 x+αy+z=α−1 x+y+αz=α−1 has infinite solutions, if α is
A
-2
B
either - 2 or 1
C
not - 2
D
1
Answer
-2
Explanation
Solution
α x+y+z=α−1 x+αy+z=α−1 x+y+αz=α−1 Δ=α 1 11α111α =α(α2−1)−1(α−1)+1(1−α) =α(α−1)(α+1)−1(α−1)−1(α−1) For infinite solutions ,Δ=0 ⇒(α−1)[α2+α−1−1]=0 ⇒(α−1)[α2+α−2]=0 ⇒(α−1)[α2+2α−α−2]=0 ⇒(α−1)[α(α+2)−1(α+2)]=0 (α−1)=0,α+2=0 ⇒α=−2,1; But α=1, ∴α=−2