Solveeit Logo

Question

Mathematics Question on Transpose of a Matrix

The system 2x+3y+z=5,3x+y+5z=72\,x+3 y+z=5,3\,x+y+5\,z=7 and x+4y2z=3x+4\,y-2\,z=3 has

A

unique solution

B

finite number of solution

C

infinite solutions

D

no solution

Answer

no solution

Explanation

Solution

The given system can be written as AX=BA X=B, where
A=[231 315 142],X=[x y z],B=[5 7 3]A =\begin{bmatrix}2 & 3 & 1 \\\ 3 & 1 & 5 \\\ 1 & 4 & -2\end{bmatrix}, X=\begin{bmatrix}x \\\ y \\\ z\end{bmatrix}, B=\begin{bmatrix}5 \\\ 7 \\\ 3\end{bmatrix}
A=231 315 142\therefore |A| =\begin{vmatrix}2 & 3 & 1 \\\ 3 & 1 & 5 \\\ 1 & 4 & -2\end{vmatrix}
=2(220)3(65)+1(121)=2(-2-20)-3(-6-5)+1(12-1)
=2(22)3(11)+1(11)=2(-22)-3(-11)+1(11)
=44+33+11=0=-44+33+11=0
A=0\because |A| =0
Hence, there exist no solution.