Solveeit Logo

Question

Question: The symmetric equation of lines \(3 x + 2 y + z - 5 = 0\) and \(x + y - 2 z - 3 = 0\), is...

The symmetric equation of lines 3x+2y+z5=03 x + 2 y + z - 5 = 0 and x+y2z3=0x + y - 2 z - 3 = 0, is

A

x15=y47=z01\frac { x - 1 } { 5 } = \frac { y - 4 } { 7 } = \frac { z - 0 } { 1 }

B

x+15=y+47=z01\frac { x + 1 } { 5 } = \frac { y + 4 } { 7 } = \frac { z - 0 } { 1 }

C

x+15=y47=z01\frac { x + 1 } { - 5 } = \frac { y - 4 } { 7 } = \frac { z - 0 } { 1 }

D

x15=y47=z01\frac { x - 1 } { - 5 } = \frac { y - 4 } { 7 } = \frac { z - 0 } { 1 }

Answer

x+15=y47=z01\frac { x + 1 } { - 5 } = \frac { y - 4 } { 7 } = \frac { z - 0 } { 1 }

Explanation

Solution

Let a, b, c be the d.r.'s of required line

\therefore 3a+2b+c=03 a + 2 b + c = 0 and a+b2c=0a + b - 2 c = 0

a41=b1+6=c32\frac { a } { - 4 - 1 } = \frac { b } { 1 + 6 } = \frac { c } { 3 - 2 } or a5=b7=c1\frac { a } { - 5 } = \frac { b } { 7 } = \frac { c } { 1 }

In order to find a point on the required line we put z=0z = 0 in the two given equation to obtain, 3x+2y=53 x + 2 y = 5 and x+y=3x + y = 3. Solving these two equations, we obtain x=1,y=4x = - 1 , y = 4.

\therefore Co-ordinates of point on required line are (1,4,0)( - 1,4,0 ). Hence required line isx+15=y47=z01\frac { x + 1 } { - 5 } = \frac { y - 4 } { 7 } = \frac { z - 0 } { 1 }.