Solveeit Logo

Question

Question: The surface area of the solid generated by the revolution of the asteroids \(x = a{\cos ^3}t\), \(y ...

The surface area of the solid generated by the revolution of the asteroids x=acos3tx = a{\cos ^3}t, y=asin3ty = a{\sin ^3}t axis is:
A.πa25\dfrac{{\pi {a^2}}}{5}
B.3πa25\dfrac{{3\pi {a^2}}}{5}
C.6πa25\dfrac{{6\pi {a^2}}}{5}
D.12πa25\dfrac{{12\pi {a^2}}}{5}

Explanation

Solution

Hint: We calculate the area under the curve using integration. In this question, we are given parametric equations of the curve. We will simplify the expression and find the appropriate limits for integrating the resultant function.

Complete step-by-step answer:
The asteroid is symmetrical about the xx axis.
We will calculate dxdt\dfrac{{dx}}{{dt}} by differentiating xx with respect to tt.
dxdt=3acos2tsint\dfrac{{dx}}{{dt}} = - 3a{\cos ^2}t\sin t
We will calculate dydt\dfrac{{dy}}{{dt}} by differentiating yy with respect to tt.
dydt=3asin2tcost\dfrac{{dy}}{{dt}} = 3a{\sin ^2}t\cos t
Also, dsdt=(dxdt)2+(dydt)2\dfrac{{ds}}{{dt}} = \sqrt {{{\left( {\dfrac{{dx}}{{dt}}} \right)}^2} + {{\left( {\dfrac{{dy}}{{dt}}} \right)}^2}}
Then,
dsdt=9a2cos4tsin2t+9a2sin4tcos2t =3asintcostsin2t+cos2t =3asintcost  \dfrac{{ds}}{{dt}} = \sqrt {9{a^2}{{\cos }^4}t{{\sin }^2}t + 9{a^2}{{\sin }^4}t{{\cos }^2}t} \\\ = 3a\sin t\cos t\sqrt {{{\sin }^2}t + {{\cos }^2}t} \\\ = 3a\sin t\cos t \\\
The limits for the tt will be defined by the limits of xx and yy.
The value of xx will be varying from the a - a to aa.
Thus the limits of tt can be found by using the equation x=acos3tx = a{\cos ^3}t
The limits of tt are
a=acos3t t=0  a = a{\cos ^3}t \\\ t = 0 \\\
And
\-a=acos3t cos3t=1 t=π  \- a = a{\cos ^3}t \\\ {\cos ^3}t = - 1 \\\ t = \pi \\\
The required surface will be 0π2πxdsdt.dt\int_0^\pi {2\pi x\dfrac{{ds}}{{dt}}.dt}
The above integration can be simplified as 20π22πxdsdt.dt2\int_0^{\dfrac{\pi }{2}} {2\pi x\dfrac{{ds}}{{dt}}.dt}
On simplifying the above equation, we get
=4π0π2acos3t.3asintcost.dt =12πa20π2sintcos4t.dt  = 4\pi \int_0^{\dfrac{\pi }{2}} {a{{\cos }^3}t.3a\sin t\cos t.dt} \\\ = 12\pi {a^2}\int_0^{\dfrac{\pi }{2}} {\sin t{{\cos }^4}t.dt} \\\
Let cost\cos t be uu and sint.dt - \sin t.dt be dudu. The limits 00 to π2\dfrac{\pi }{2}will be changed as cos(0)=1\cos \left( 0 \right) = 1 to cos(π2)=0\cos \left( {\dfrac{\pi }{2}} \right) = 0 for solving the integration.
=12πa210u4.du =12πa2[u55]10 =12πa2(015) =125πa2  = 12\pi {a^2}\int_1^0 { - {u^4}.du} \\\ = - 12\pi {a^2}{\left[ {\dfrac{{{u^5}}}{5}} \right]_1}^0 \\\ = - 12\pi {a^2}\left( {\dfrac{{0 - 1}}{5}} \right) \\\ = \dfrac{{12}}{5}\pi {a^2} \\\
Thus the surface area of the asteroid is 125πa2\dfrac{{12}}{5}\pi {a^2}.
Hence, option D is correct.

Note: In this question, we have integrated using substitution. It is important to take limits according to the substitution. Also, be careful while substituting the limits. We have to put the upper limit first and then followed by the lower limit.