Solveeit Logo

Question

Mathematics Question on Application of derivatives

The surface area of a ball is increasing at the rate of 2πscm/sec2 \pi \, s cm/sec. The rate at which the radius is increasing when the surface area is 16πscm16 \pi \, s cm is

A

0.125cm/sec0.125\, cm/sec

B

0.25cm/sec0.25\, cm/sec

C

0.5cm/sec0.5\, cm/sec

D

1cm/sec1\, cm/sec

Answer

0.125cm/sec0.125\, cm/sec

Explanation

Solution

We have, dSdt=2π\frac{dS}{dt} = 2 \pi sq . cm /sec ? ?
? ?
....(i)
Now, S=4πr2S = 4 \pi r^2? ?
? ?
....(i)
Differentiating (ii) w.r.t, t, we get
? ? dSdt=8πrdrdy\frac{dS}{dt} = 8\pi r \frac{dr}{dy} ? ? 2π=8πrdrdt\Rightarrow 2\pi = 8\pi r \frac{dr}{dt} [From (i)]
drdt=14r\Rightarrow \frac{dr}{dt} =\frac{1}{4r} ? ?? ? ...(iii)
Now, when S=16π4πr2=16πS = 16 \pi \Rightarrow 4\pi r^{2} = 16\pi
r2=4r=\Rightarrow r^{2} =4 \Rightarrow r = 2 cm
Hence, [drdt]r=2=14×2=180.125\left[\frac{dr}{dt}\right]_{r=2} = \frac{1}{4\times2} = \frac{1}{8} 0.125 cm /sec