Solveeit Logo

Question

Question: The sums of \(n\) terms of two arithmatic series are in the ratio\(2 n + 3 : 6 n + 5\), then the rat...

The sums of nn terms of two arithmatic series are in the ratio2n+3:6n+52 n + 3 : 6 n + 5, then the ratio of their terms is.

A

53 : 155

B

27 : 77

C

29 : 83

D

31 : 89

Answer

53 : 155

Explanation

Solution

We have Sn1Sn2=2n+36n+5\frac { S _ { n _ { 1 } } } { S _ { n _ { 2 } } } = \frac { 2 n + 3 } { 6 n + 5 }

n2[2a1+(n1)d1]n2[2a2+(n1)d2]=2n+36n+5\frac { \frac { n } { 2 } \left[ 2 a _ { 1 } + ( n - 1 ) d _ { 1 } \right] } { \frac { n } { 2 } \left[ 2 a _ { 2 } + ( n - 1 ) d _ { 2 } \right] } = \frac { 2 n + 3 } { 6 n + 5 }

2[a1+(n12)d1]2[a2+(n12)d2]=2n+36n+5\frac { 2 \left[ a _ { 1 } + \left( \frac { n - 1 } { 2 } \right) d _ { 1 } \right] } { 2 \left[ a _ { 2 } + \left( \frac { n - 1 } { 2 } \right) d _ { 2 } \right] } = \frac { 2 n + 3 } { 6 n + 5 }

a1+(n12)d1a2+(n12)d2=2n+36n+5\frac { a _ { 1 } + \left( \frac { n - 1 } { 2 } \right) d _ { 1 } } { a _ { 2 } + \left( \frac { n - 1 } { 2 } \right) d _ { 2 } } = \frac { 2 n + 3 } { 6 n + 5 }

Put n=25n = 25 then a1+12d1a2+12d2=2(25)+36(25)+3\frac { a _ { 1 } + 12 d _ { 1 } } { a _ { 2 } + 12 d _ { 2 } } = \frac { 2 ( 25 ) + 3 } { 6 ( 25 ) + 3 }T131T132=53155\frac { T _ { 13 _ { 1 } } } { T _ { 13 _ { 2 } } } = \frac { 53 } { 155 } .

S