Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

The sum value of the series 34+536+7144+9400+...\frac{3}{4} +\frac{5}{36} +\frac{7}{144} +\frac{9}{400} + ...\infty is

A

11

B

22

C

3232

D

00

Answer

11

Explanation

Solution

Let S=34+536+7144+9400+S=\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+\frac{9}{400}+\ldots\infty =31222+52232+73242+94252+=\frac{3}{1^{2}\cdot2^{2}}+\frac{5}{2^{2} \cdot3^{2}}+\frac{7}{3^{2} \cdot4^{2}}+\frac{9}{4^{2} \cdot5^{2}}+\ldots\infty =22121222+32222232+42323242+52424252+=\frac{2^{2}-1^{2}}{1^{2}\cdot2^{2}}+\frac{3^{2}-2^{2}}{2^{2}\cdot3^{2}}+\frac{4^{2}-3^{2}}{3^{2} \cdot4^{2}}+\frac{5^{2} -4^{2}}{4^{2}\cdot5^{2}}+\ldots\infty =1122+122132+132142+142152+=1-\frac{1}{2^{2}}+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{4^{2}}-\frac{1}{5^{2}}+\ldots\infty =1=1