Solveeit Logo

Question

Question: The sum up to infinity terms of the series \(\dfrac{4}{5} + \dfrac{8}{{65}} + \dfrac{{12}}{{325}} + ...

The sum up to infinity terms of the series 45+865+12325+...+arbr4+c+...\dfrac{4}{5} + \dfrac{8}{{65}} + \dfrac{{12}}{{325}} + ... + \dfrac{{ar}}{{b{r^4} + c}} + ... is (Here, a,b,ca,b,c are integers and arbr4+c\dfrac{{ar}}{{b{r^4} + c}} denotes the rth{r^{th}} term of the series).
A) 12\dfrac{1}{2}
B) 13\dfrac{1}{3}
C) 14\dfrac{1}{4}
D) 11

Explanation

Solution

We are given the general formula of rth{r^{th}} term. Substituting different values for rr and comparing with the given terms we get the value of a,ba, b and cc. Then we can consider the partial sum of the expression and see the infinite sum by tending nn to infinity.

Useful formula:
For any a,ba,b we have the algebraic identities.
(a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2}
a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b)

Complete step by step solution:
It is given that the rth{r^{th}} term of the series is arbr4+c\dfrac{{ar}}{{b{r^4} + c}}
So substituting r=1r = 1, we get the first term.
That is, a×1b×14+c=ab+c\dfrac{{a \times 1}}{{b \times {1^4} + c}} = \dfrac{a}{{b + c}}
But we have, first term given as 45\dfrac{4}{5}.
This gives, ab+c=45\dfrac{a}{{b + c}} = \dfrac{4}{5}.
So we have, a=4,b+c=5a = 4,b + c = 5
Now substitute r=2r = 2,
a×2b×24+c=2a16b+c\dfrac{{a \times 2}}{{b \times {2^4} + c}} = \dfrac{{2a}}{{16b + c}}
But we have, second term as 865\dfrac{8}{{65}}.
Comparing we get,
16b+c=6516b + c = 65
Also b+c=5b + c = 5
Subtracting both sides we get,
15b=6015b = 60
Dividing both sides by 1515 we get,
b=6015=4b = \dfrac{{60}}{{15}} = 4
c=5b=54=1\Rightarrow c = 5 - b = 5 - 4 = 1
So we have, a=4,b=4,c=1a = 4,b = 4,c = 1
Therefore the rth{r^{th}} term becomes 4r4r4+1\dfrac{{4r}}{{4{r^4} + 1}}.
Consider 4r4+14{r^4} + 1.
Adding and subtracting 4r24{r^2} in the right side we get,
4r4+1=4r4+4r2+14r24{r^4} + 1 = 4{r^4} + 4{r^2} + 1 - 4{r^2}
Now we have,
4r4+1=(4r4+4r2+1)4r24{r^4} + 1 = (4{r^4} + 4{r^2} + 1) - 4{r^2}
We have (a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2}
Using this we get,
4r4+1=(2r2+1)24r24{r^4} + 1 = {(2{r^2} + 1)^2} - 4{r^2}
We know, a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b)
4r4+1=[(2r2+1)2r][(2r2+1)+2r]\Rightarrow 4{r^4} + 1 = [(2{r^2} + 1) - 2r][(2{r^2} + 1) + 2r]
4r4+1=(2r2+12r)(2r2+1+2r)\Rightarrow 4{r^4} + 1 = (2{r^2} + 1 - 2r)(2{r^2} + 1 + 2r)

Then 4r4r4+1=4r(2r2+12r)(2r2+1+2r)\dfrac{{4r}}{{4{r^4} + 1}} = \dfrac{{4r}}{{(2{r^2} + 1 - 2r)(2{r^2} + 1 + 2r)}}
4r4r4+1=1(2r2+12r)1(2r2+1+2r)\dfrac{{4r}}{{4{r^4} + 1}} = \dfrac{1}{{(2{r^2} + 1 - 2r)}} - \dfrac{1}{{(2{r^2} + 1 + 2r)}}
Now consider the partial sum,
1n4r4r4+1=1n(1(2r2+12r)1(2r2+1+2r))\sum\limits_1^n {\dfrac{{4r}}{{4{r^4} + 1}}} = \sum\limits_1^n {(\dfrac{1}{{(2{r^2} + 1 - 2r)}} - \dfrac{1}{{(2{r^2} + 1 + 2r)}}} )
Substituting values r=1,2,3...r = 1,2,3... we get,
1n4r4r4+1=12+1212+1+2+12+1+218+1+4+18+1+4...\sum\limits_1^n {\dfrac{{4r}}{{4{r^4} + 1}}} = \dfrac{1}{{2 + 1 - 2}} - \dfrac{1}{{2 + 1 + 2}} + \dfrac{1}{{2 + 1 + 2}} - \dfrac{1}{{8 + 1 + 4}} + \dfrac{1}{{8 + 1 + 4}} - ...
1n4r4r4+1=115+15113+113...\sum\limits_1^n {\dfrac{{4r}}{{4{r^4} + 1}}} = 1 - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{{13}} + \dfrac{1}{{13}} - ...
So we can see that the consecutive terms get cancelling.
When nn \to \infty , 1n4r4r4+1=115+15113+113...1\sum\limits_1^n {\dfrac{{4r}}{{4{r^4} + 1}}} = 1 - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{{13}} + \dfrac{1}{{13}} - ... \to 1
So we get the sum up to infinity of the series is 11.

\therefore The answer is option D.

Note:
This problem includes a lot of steps. So we may have made mistakes easily. Also remember that when nn \to \infty , then 1n0\dfrac{1}{n} \to 0 and so 11n11 - \dfrac{1}{n} \to 1. We often use the idea of partial sum in finding the infinite sum.