Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

The sum to the infinity of the series 1+23+632+1033+1033+1434+......1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\frac{10}{3^{3}}+\frac{14}{3^{4}}+...... is

A

22

B

33

C

44

D

66

Answer

33

Explanation

Solution

Let S=1+23+632+1033+1033+1434+...(1)S=1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\frac{10}{3^{3}}+\frac{14}{3^{4}}+...\left(1\right) 13S=13+232+633+1034+...(2)\frac{1}{3}S=\frac{1}{3}+\frac{2}{3^{2}}+\frac{6}{3^{3}}+\frac{10}{3^{4}}+...\left(2\right) Dividing (1)\left(1\right) S(113)=1+13+432+433+434+....S\left(1-\frac{1}{3}\right)=1+\frac{1}{3}+\frac{4}{3^{2}}+\frac{4}{3^{3}}+\frac{4}{3^{4}}+.... 23S=43+432(1+13+132+.....)23\frac{2}{3}S=\frac{4}{3}+\frac{4}{3^{2}}\left(1+\frac{1}{3}+\frac{1}{3^{2}}+.....\right) \Rightarrow \frac{2}{3} S=43+432(1113)=43+43232+43+23=6223S=63S=3S=\frac{4}{3}+\frac{4}{3^{2}}\left(\frac{1}{1-\frac{1}{3}}\right)=\frac{4}{3}+\frac{4}{3^{2}} \frac{3}{2}+\frac{4}{3}+\frac{2}{3}=\frac{6}{2} \Rightarrow \frac{2}{3}S=\frac{6}{3} \Rightarrow S=3