Solveeit Logo

Question

Question: The sum to \((n + 1)\) terms of the following series \(\frac{C_{0}}{2} - \frac{C_{1}}{3} + \frac{C_...

The sum to (n+1)(n + 1) terms of the following series

C02C13+C24C35+.....\frac{C_{0}}{2} - \frac{C_{1}}{3} + \frac{C_{2}}{4} - \frac{C_{3}}{5} + ..... is

A

1n+1\frac{1}{n + 1}

B

1n+2\frac{1}{n + 2}

C

1n(n+1)\frac{1}{n(n + 1)}

D

None of these

Answer

None of these

Explanation

Solution

(1x)n=C0C1x+C2x2C3x3+.......\mathbf{(1}\mathbf{-}\mathbf{x}\mathbf{)}^{\mathbf{n}}\mathbf{=}\mathbf{C}_{\mathbf{0}}\mathbf{-}\mathbf{C}_{\mathbf{1}}\mathbf{x +}\mathbf{C}_{\mathbf{2}}\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{C}_{\mathbf{3}}\mathbf{x}^{\mathbf{3}}\mathbf{+ .......}

x(1x)n=C0xC1x2+C2x3C3x4+.....x(1 - x)^{n} = C_{0}x - C_{1}x^{2} + C_{2}x^{3} - C_{3}x^{4} + .....

01x(1x)ndx=C0[x22]01C1[x33]01+C2[x44]01.......{\int_{0}^{1}{x(1 - x)^{n}dx = C_{0}\left\lbrack \frac{x^{2}}{2} \right\rbrack_{0}^{1} - C_{1}\left\lbrack \frac{x^{3}}{3} \right\rbrack}}_{0}^{1} + C_{2}\left\lbrack \frac{x^{4}}{4} \right\rbrack_{0}^{1} - ....... (i)

The integral on L.H.S. of (i) =10(1t)tn(dt)\int_{1}^{0}{(1 - t)t^{n}( - dt)} by putting

1x=t1 - x = t, ⇒ 01(tntn+1)dt=1n+11n+2\int_{0}^{1}{(t^{n} - t^{n + 1})dt = \frac{1}{n + 1} - \frac{1}{n + 2}}

Whereas the integral on the R.H.S. of (i)

= C0[12]C1[13]+C24.......C_{0}\left\lbrack \frac{1}{2} \right\rbrack - C_{1}\left\lbrack \frac{1}{3} \right\rbrack + \frac{C_{2}}{4}....... = C02C13+C24.......\frac{C_{0}}{2} - \frac{C_{1}}{3} + \frac{C_{2}}{4} - ....... to (n+1)(n + 1) terms = 1n+11n+2=1(n+1)(n+2)\frac{1}{n + 1} - \frac{1}{n + 2} = \frac{1}{(n + 1)(n + 2)}

Trick : Put n=1n = 1 in given series = 1C021C13=16\frac{1C_{0}}{2} - \frac{1C_{1}}{3} = \frac{1}{6}.

Which is given by option (4).