Solveeit Logo

Question

Question: The sum to infinity of the series \(1 - 3x + 5{x^2} - 7{x^3} + ....\infty \), when \(\left| x \right...

The sum to infinity of the series 13x+5x27x3+....1 - 3x + 5{x^2} - 7{x^3} + ....\infty , when x<1\left| x \right| < 1, is
A.S=1x(1+x)2{S_\infty } = \dfrac{{1 - x}}{{{{\left( {1 + x} \right)}^2}}}
B.S=1x(1+x)3{S_\infty } = \dfrac{{1 - x}}{{{{\left( {1 + x} \right)}^3}}}
C.S=1+x(1x)2{S_\infty } = \dfrac{{1 + x}}{{{{\left( {1 - x} \right)}^2}}}
D.S=1+x(1x)3{S_\infty } = \dfrac{{1 + x}}{{{{\left( {1 - x} \right)}^3}}}

Explanation

Solution

We will first form the G.P. using the given series. We will first multiply the given series by xx and then we will then subtract the two equations to form a G.P. We will then calculate the sum using the formula S=a1r{S_\infty } = \dfrac{a}{{1 - r}}, where aa is the first term and rr is the common ratio and r<1\left| r \right| < 1

Complete step-by-step answer:
We are given that the series is S=13x+5x27x3+....S = 1 - 3x + 5{x^2} - 7{x^3} + ....\infty (1)
Now, we will multiply the equation (1) by xx
Then, we will get Sx=x3x2+5x37x4+....Sx = x - 3{x^2} + 5{x^3} - 7{x^4} + ....\infty (2)
Now, subtract equation (1) from equation (2)
That is,
SSx=13x+5x27x3+3x5x2+...S - Sx = 1 - 3x + 5{x^2} - 7{x^3} + 3x - 5{x^2} + ...\infty
Which is equals to
S(1x)=1+2x+2x2+2x3...S\left( {1 - x} \right) = 1 + 2x + 2{x^2} + 2{x^3}...\infty
We can write the above equation as
S(1x)=1+2(x+x2+x3...)S\left( {1 - x} \right) = 1 + 2\left( {x + {x^2} + {x^3}...\infty } \right)
Now, we can see the series x+x2+x3...x + {x^2} + {x^3}...\infty is a G.P. with a common ratio as xx.
As, we know the sum of infinite number of terms of a G.P. is given by
S=a1r{S_\infty } = \dfrac{a}{{1 - r}}, where r<1\left| r \right| < 1
We have a=xa = x, r=xr = x and x<1\left| x \right| < 1
Then, the sum of series x+x2+x3...x + {x^2} + {x^3}...\infty is x1x\dfrac{x}{{1 - x}}
Therefore, on substituting the value of x+x2+x3...x + {x^2} + {x^3}...\infty in equation S(1x)=1+2(x+x2+x3...)S\left( {1 - x} \right) = 1 + 2\left( {x + {x^2} + {x^3}...\infty } \right) is
S(1x)=1+2x1x S(1x)=1+x1x S=1+x(1x)2  S\left( {1 - x} \right) = 1 + \dfrac{{2x}}{{1 - x}} \\\ \Rightarrow S\left( {1 - x} \right) = \dfrac{{1 + x}}{{1 - x}} \\\ \Rightarrow S = \dfrac{{1 + x}}{{{{\left( {1 - x} \right)}^2}}} \\\
Therefore, option C is correct.

Note: We can only apply the formula of infinite terms of series only when the r<1\left| r \right| < 1, where rr is the common ratio. When there are infinite terms, the sum of G.P is S=a1r{S_\infty } = \dfrac{a}{{1 - r}}, where rr is the common ratio, aa is the first term of the G.P.