Solveeit Logo

Question

Question: The sum \(\sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}}\) is equal to (a) \(\dfrac{\le...

The sum r=0n(r+1)nCr2\sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}} is equal to
(a) (n+2)(2n1)!n!(n1)!\dfrac{\left( n+2 \right)\left( 2n-1 \right)!}{n!\left( n-1 \right)!}
(b) (n+2)(2n+1)!n!(n1)!\dfrac{\left( n+2 \right)\left( 2n+1 \right)!}{n!\left( n-1 \right)!}
(c) (n+2)(2n+1)!n!(n+1)!\dfrac{\left( n+2 \right)\left( 2n+1 \right)!}{n!\left( n+1 \right)!}
(d) (n+2)(2n1)!n!(n+1)!\dfrac{\left( n+2 \right)\left( 2n-1 \right)!}{n!\left( n+1 \right)!}

Explanation

Solution

We will first expand the term (r+1)nCr2\left( r+1 \right){}^{n}C_{r}^{2} by using distribution law of multiplication. After that we calculate each term in the expression by substituting the value nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}. Now we will get the simple values of each term of (r+1)nCr2\left( r+1 \right){}^{n}C_{r}^{2}. So according to the problem we will apply the summation to get the result.

Complete step-by-step answer:
Given that, r=0n(r+1)nCr2\sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}}
Using the distribution law of multiplication to simplify the term (r+1)nCr2\left( r+1 \right){}^{n}C_{r}^{2}, then we will get
(r+1)nCr2=r.nCr2+nCr2\left( r+1 \right){}^{n}C_{r}^{2}=r.{}^{n}C_{r}^{2}+{}^{n}C_{r}^{2}
So, we can write the term r=0n(r+1)nCr2\sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}} as r=0n(r+1)nCr2=r=0nr.nCr2+r=0nnCr2\sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}}=\sum\limits_{r=0}^{n}{r.}{}^{n}C_{r}^{2}+\sum\limits_{r=0}^{n}{{}^{n}C_{r}^{2}}
Now we will calculate the values of r.nCr2r.{}^{n}C_{r}^{2} and nCr2{}^{n}C_{r}^{2} individually, after that we will substitute them in the above equation.
We know that nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}, then the value of r.nCrr.{}^{n}{{C}_{r}} is calculated as
r.nCr=r.n!r!(nr)!r.{}^{n}{{C}_{r}}=r.\dfrac{n!}{r!\left( n-r \right)!}
Now we are going to write n!=n.(n1)!n!=n.\left( n-1 \right)! and r!=r.(r1)!r!=r.\left( r-1 \right)! in the above equation, then
r.nCr=r.n.(n1)!r.(r1)!(nr)!r.{}^{n}{{C}_{r}}=r.\dfrac{n.\left( n-1 \right)!}{r.\left( r-1 \right)!\left( n-r \right)!}
Now add and subtract one in the term (nr)!\left( n-r \right)!, then we will have
r.nCr=n.(n1)!(r1)![nr+11]! r.nCr=n.(n1)!(r1)![(n1)(r1)]! \begin{aligned} & r.{}^{n}{{C}_{r}}=n.\dfrac{\left( n-1 \right)!}{\left( r-1 \right)!\left[ n-r+1-1 \right]!} \\\ & \Rightarrow r.{}^{n}{{C}_{r}}=n.\dfrac{\left( n-1 \right)!}{\left( r-1 \right)!\left[ \left( n-1 \right)-\left( r-1 \right) \right]!} \\\ \end{aligned}
We can write the term (n1)!(r1)![(n1)(r1)]!\dfrac{\left( n-1 \right)!}{\left( r-1 \right)!\left[ \left( n-1 \right)-\left( r-1 \right) \right]!}as n1Cr1{}^{n-1}{{C}_{r-1}}, then we will have
r.nCr=n.n1Cr1r.{}^{n}{{C}_{r}}=n.{}^{n-1}{{C}_{r-1}}
So from the value of r.nCrr.{}^{n}{{C}_{r}}, we can write ther.nCr2=n.n1Cr12r.{}^{n}C_{r}^{2}=n.{}^{n-1}C_{r-1}^{2}
r=0nr.nCr2=r=0nn.n1Cr12 r=0nr.nCr2=n[n1C02+n1C12+n1C22+...+n1Cn12] \begin{aligned} & \therefore \sum\limits_{r=0}^{n}{r.{}^{n}C_{r}^{2}}=\sum\limits_{r=0}^{n}{n.{}^{n-1}C_{r-1}^{2}} \\\ & \Rightarrow \sum\limits_{r=0}^{n}{r.{}^{n}C_{r}^{2}}=n\left[ {}^{n-1}C_{0}^{2}+{}^{n-1}C_{1}^{2}+{}^{n-1}C_{2}^{2}+...+{}^{n-1}C_{n-1}^{2} \right] \\\ \end{aligned}
We have an identity which states that m+nCk=r=0kmCrnCkr{}^{m+n}{{C}_{k}}=\sum\limits_{r=0}^{k}{{}^{m}{{C}_{r}}\cdot {}^{n}{{C}_{k-r}}}. Now, in this identity, we will substitute m=k=nm=k=n. So, we get n+nCn=r=0nnCrnCnr{}^{n+n}{{C}_{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}\cdot {}^{n}{{C}_{n-r}}}. We already know that nCr=nCnr{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}. Therefore, we get the following,
2nCn=r=0nnCr2{}^{2n}{{C}_{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}^{2}}
Hence, we have r=0nnCr2=2n!n!n!.....(i)\sum\limits_{r=0}^{n}{{}^{n}C_{r}^{2}}=\dfrac{2n!}{n!n!}.....\left( \text{i} \right) from this the value of r=0nn1Cr2=(2n1)!(n1)!n!\sum\limits_{r=0}^{n}{{}^{n-1}C_{r}^{2}}=\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}
r=0nr.nCr2=n.(2n1)!(n1)!n!........(ii)\Rightarrow \sum\limits_{r=0}^{n}{r.{}^{n}C_{r}^{2}}=n.\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}........\left( \text{ii} \right)
Now adding the equations (i)\left( \text{i} \right) and (ii)\left( \text{ii} \right), then we will get
r=0n(r+1)nCr2=n.(2n1)!(n1)!n!+2n!n!n! r=0n(r+1)nCr2=n.(2n1)!(n1)!n!+2n(2n1)!n(n1)!n! \begin{aligned} & \sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}}=n.\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}+\dfrac{2n!}{n!n!} \\\ & \Rightarrow \sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}}=n.\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}+\dfrac{2n\left( 2n-1 \right)!}{n\left( n-1 \right)!n!} \\\ \end{aligned}
Now taking (2n1)!(n1)!n!\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!} as common in the above equation, then we will have
r=0n(r+1)nCr2=(2n1)!(n1)!n![n+2nn] r=0n(r+1)nCr2=(n+2)(2n1)!(n1)!n! \begin{aligned} & \sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}}=\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}\left[ n+\dfrac{2n}{n} \right] \\\ & \Rightarrow \sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}}=\dfrac{\left( n+2 \right)\left( 2n-1 \right)!}{\left( n-1 \right)!n!} \\\ \end{aligned}

So, the correct answer is “Option A”.

Note: We can also solve the problem by using the formula aC02+(a+d)C12+(a+2d)C22+...+(a+nd)Cn2=(2a+nd2)2nCnaC_{0}^{2}+\left( a+d \right)C_{1}^{2}+\left( a+2d \right)C_{2}^{2}+...+\left( a+nd \right)C_{n}^{2}=\left( \dfrac{2a+nd}{2} \right){}^{2n}{{C}_{n}}
Substitute the value of a=1a=1 and d=1d=1, then
r=0n(r+1)nCr2=(2×1+n×12)2nCn r=0n(r+1)nCr2=(n+22)×2n!n!×n! r=0n(r+1)nCr2=n+22×2n×(2n1)!n×(n1)!×n! r=0n(r+1)nCr2=(n+2)×(2n1)!n!×(n1)! \begin{aligned} & \sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}}=\left( \dfrac{2\times 1+n\times 1}{2} \right){}^{2n}{{C}_{n}} \\\ & \Rightarrow \sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}}=\left( \dfrac{n+2}{2} \right)\times \dfrac{2n!}{n!\times n!} \\\ & \Rightarrow \sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}}=\dfrac{n+2}{2}\times 2n\times \dfrac{\left( 2n-1 \right)!}{n\times \left( n-1 \right)!\times n!} \\\ & \Rightarrow \sum\limits_{r=0}^{n}{\left( r+1 \right){}^{n}C_{r}^{2}}=\dfrac{\left( n+2 \right)\times \left( 2n-1 \right)!}{n!\times \left( n-1 \right)!} \\\ \end{aligned}
From both the methods we get the same answer.