Question
Question: The sum \(S = \sin\theta + \sin 2\theta + .... + \sin n\theta,\) equals...
The sum S=sinθ+sin2θ+....+sinnθ, equals
A
sin21(n+1) θsin21n θ/sin2θ
B
cos21(n+1) θsin21nθ/sin2θ
C
sin21(n+1)θcos21nθ/sin2θ
D
cos21(n+1)θcos21nθ/sin2θ
Answer
sin21(n+1) θsin21n θ/sin2θ
Explanation
Solution
S=sinθ+sin2θ+sin3θ+.....+sinnθ
We know, sinθ+sin(θ+β)+sin(θ+2β)+.......nterm
= sin2βsin2nβsin[2θ+θ+(n−1)β]
Put β=θ, then S=sin2θsin2nθ.sin2θ(n+1).