Solveeit Logo

Question

Question: The sum \(S = \sin\theta + \sin 2\theta + .... + \sin n\theta,\) equals...

The sum S=sinθ+sin2θ+....+sinnθ,S = \sin\theta + \sin 2\theta + .... + \sin n\theta, equals

A

sin12(n+1) θsin12n θ/sinθ2\sin\frac{1}{2}(n + 1)\ \theta\sin\frac{1}{2}n\ \theta/\sin\frac{\theta}{2}

B

cos12(n+1) θsin12nθ/sinθ2\cos\frac{1}{2}(n + 1)\ \theta\sin\frac{1}{2}n\theta/\sin\frac{\theta}{2}

C

sin12(n+1)θcos12nθ/sinθ2\sin\frac{1}{2}(n + 1)\theta\cos\frac{1}{2}n\theta/\sin\frac{\theta}{2}

D

cos12(n+1)θcos12nθ/sinθ2\cos\frac{1}{2}(n + 1)\theta\cos\frac{1}{2}n\theta/\sin\frac{\theta}{2}

Answer

sin12(n+1) θsin12n θ/sinθ2\sin\frac{1}{2}(n + 1)\ \theta\sin\frac{1}{2}n\ \theta/\sin\frac{\theta}{2}

Explanation

Solution

S=sinθ+sin2θ+sin3θ+.....+sinnθS = \sin\theta + \sin 2\theta + \sin 3\theta + ..... + \sin n\theta

We know, sinθ+sin(θ+β)+sin(θ+2β)+.......nterm\sin\theta + \sin(\theta + \beta) + \sin(\theta + 2\beta) + .......n\text{term}

= sinnβ2sinβ2sin[θ+θ+(n1)β2]\frac{\sin\frac{n\beta}{2}}{\sin\frac{\beta}{2}}\sin\left\lbrack \frac{\theta + \theta + (n - 1)\beta}{2} \right\rbrack

Put β=θ\beta = \theta, then S=sinnθ2.sinθ(n+1)2sinθ2S = \frac{\sin\frac{n\theta}{2}.\sin\frac{\theta(n + 1)}{2}}{\sin\frac{\theta}{2}}.