Solveeit Logo

Question

Mathematics Question on Vectors

The sum of two vectors a\vec{a} and b\vec{b} is a vector c\vec{c}, such that a=b=c=2.|\vec{a}|=|\vec{b}|=|\vec{c}|=2. Then, the magnitude of ab\vec{a} -\vec {b} is equal to

A

3\sqrt{3}

B

22

C

232\sqrt{3}

D

00

Answer

232\sqrt{3}

Explanation

Solution

Given, (a+b)=c(a+b)=c Squaring on both sides, (a+b)2=c2{{(a+b)}^{2}}={{c}^{2}} \Rightarrow (a+b).(a+b)c2(a+b)\,.\,(a+b)-|c{{|}^{2}} \Rightarrow a2+b2+2a.b=c2|a{{|}^{2}}+|b{{|}^{2}}+2a.b=|c{{|}^{2}} \Rightarrow 4+4+2a.b=44+4+2a.b=4 (a=b=c=2given)(\because \,\,|a|=|b|=|c|=2\,given) \Rightarrow a.b=2a\,.\,b=-2 ..(i) Now, we have a+b2=a2+b22a.b|a+b{{|}^{2}}=|a{{|}^{2}}+|b{{|}^{2}}-2a.b =4+42(2)=4+4-2(-2) [from E (i)] \Rightarrow ab=23|a-b|=2\sqrt{3} \therefore Magnitude of (ab)=23(a-b)=2\sqrt{3}