Solveeit Logo

Question

Question: The sum of three numbers in A.P. is 12, and the sum of their cubes is 408; find them....

The sum of three numbers in A.P. is 12, and the sum of their cubes is 408; find them.

Explanation

Solution

Hint: Assume the numbers as (a – d), a, (a + d) and apply the conditions to solve to get the values of ‘a’ and ‘d’ and after that put that values in assumed numbers to get the answer.

Complete step-by-step answer:

As we have given that the three numbers are in A.P. and therefore we will assume (a-d), a, (a+d) as the three numbers in A.P. with ‘a’ as the first term and‘d’ is the common difference.
As the sum of three numbers is 12, therefore we can write,
(a - d) + a + (a + d) = 12
\Rightarrow a - d + a + a + d = 12
\Rightarrow a + a + a = 12
\Rightarrow 3a = 12
a=123\Rightarrow a=\dfrac{12}{3}
\Rightarrow a = 4 …………………………………. (2)
Now, as per the second condition given in the problem we can write,
(ad)3+a3+(a+d)3=408\therefore {{\left( a-d \right)}^{3}}+{{a}^{3}}+{{\left( a+d \right)}^{3}}=408
If we put the value equation (2) in the middle term of the above equation we will get,
(ad)3+43+(a+d)3=408\Rightarrow {{\left( a-d \right)}^{3}}+{{4}^{3}}+{{\left( a+d \right)}^{3}}=408
(ad)3+64+(a+d)3=408\Rightarrow {{\left( a-d \right)}^{3}}+64+{{\left( a+d \right)}^{3}}=408
(ad)3+(a+d)3=40864\Rightarrow {{\left( a-d \right)}^{3}}+{{\left( a+d \right)}^{3}}=408-64
(ad)3+(a+d)3=344\Rightarrow {{\left( a-d \right)}^{3}}+{{\left( a+d \right)}^{3}}=344 ………………………………… (3)
Now to proceed further in the solution we should know the formula given below,
Formula:
(x3+y3)=(x+y)×(x2+y2xy)\left( {{x}^{3}}+{{y}^{3}} \right)=\left( x+y \right)\times \left( {{x}^{2}}+{{y}^{2}}-xy \right)
By using above formula we can write equation (3) as follows,
[(ad)+(a+d)]×[(ad)2+(a+d)2(ad)×(a+d)]=344\therefore \left[ \left( a-d \right)+\left( a+d \right) \right]\times \left[ {{\left( a-d \right)}^{2}}+{{\left( a+d \right)}^{2}}-\left( a-d \right)\times \left( a+d \right) \right]=344
[ad+a+d]×[(ad)2+(a+d)2(ad)×(a+d)]=344\therefore \left[ a-d+a+d \right]\times \left[ {{\left( a-d \right)}^{2}}+{{\left( a+d \right)}^{2}}-\left( a-d \right)\times \left( a+d \right) \right]=344
[a+a]×[(ad)2+(a+d)2(a2+adadd2)]=344\therefore \left[ a+a \right]\times \left[ {{\left( a-d \right)}^{2}}+{{\left( a+d \right)}^{2}}-\left( {{a}^{2}}+ad-ad-{{d}^{2}} \right) \right]=344
2a×[(ad)2+(a+d)2(a2d2)]=344\therefore 2a\times \left[ {{\left( a-d \right)}^{2}}+{{\left( a+d \right)}^{2}}-\left( {{a}^{2}}-{{d}^{2}} \right) \right]=344
2a×[(ad)2+(a+d)2a2+d2]=344\therefore 2a\times \left[ {{\left( a-d \right)}^{2}}+{{\left( a+d \right)}^{2}}-{{a}^{2}}+{{d}^{2}} \right]=344
Now to proceed further we should know the formulae given below,
Formulae:
(x+y)2=(x2+2xy+y2){{\left( x+y \right)}^{2}}=\left( {{x}^{2}}+2xy+{{y}^{2}} \right) And (x+y)2=(x22xy+y2){{\left( x+y \right)}^{2}}=\left( {{x}^{2}}-2xy+{{y}^{2}} \right)
By using the above formulae we can write the above equation as,
2a×[(a22ad+d2)+(a2+2ad+d2)a2+d2]=344\therefore 2a\times \left[ \left( {{a}^{2}}-2ad+{{d}^{2}} \right)+\left( {{a}^{2}}+2ad+{{d}^{2}} \right)-{{a}^{2}}+{{d}^{2}} \right]=344
By opening the brackets we will get,
2a×[a22ad+d2+a2+2ad+d2a2+d2]=344\Rightarrow 2a\times \left[ {{a}^{2}}-2ad+{{d}^{2}}+{{a}^{2}}+2ad+{{d}^{2}}-{{a}^{2}}+{{d}^{2}} \right]=344
2a×[d2+a2+d2+d2]=344\Rightarrow 2a\times \left[ {{d}^{2}}+{{a}^{2}}+{{d}^{2}}+{{d}^{2}} \right]=344
2a×[3d2+a2]=344\Rightarrow 2a\times \left[ 3{{d}^{2}}+{{a}^{2}} \right]=344
By substituting the value of equation (2) in the above equation we will get,
2×4×[3d2+42]=344\Rightarrow 2\times 4\times \left[ 3{{d}^{2}}+{{4}^{2}} \right]=344
8×[3d2+42]=344\Rightarrow 8\times \left[ 3{{d}^{2}}+{{4}^{2}} \right]=344
(x+y)3and(xy)3{{\left( x+y \right)}^{3}}and{{\left( x-y \right)}^{3}}
3d2+16=43\Rightarrow 3{{d}^{2}}+16=43
3d2=4316\Rightarrow 3{{d}^{2}}=43-16
3d2=27\Rightarrow 3{{d}^{2}}=27
d2=273\Rightarrow {{d}^{2}}=\dfrac{27}{3}
d2=9\Rightarrow {{d}^{2}}=9
By taking square roots on both sides of the equation we will get,
d=±3\therefore d=\pm 3
Therefore d = 3 OR d = -3 ……………………………………. (4)
Now we will rewrite the three numbers below,
(a – d), a, (a + d)
If we put the values of equation (2) and equation (4) in above equation as shown below,
a = 4 and d = 3
Therefore numbers will become,
(4 – 3), 4, (4+3)
Therefore the numbers are,
1, 4, 7.
Now,
a = 4 and d = - 3
Therefore numbers will become,
[4 – (-3)], 4, [4+(-3)]
(4 + 3), 4, (4 – 3)
Therefore the numbers are,
7, 4, 1.
Therefore the three numbers are 1, 4, 7 or 7, 4, 1.

Note: Assume the standard numbers given by (a – d), a, (a + d) to make the calculations easier. Also in the step (ad)3+(a+d)3=344{{\left( a-d \right)}^{3}}+{{\left( a+d \right)}^{3}}=344 you can also use the formulae of (x+y)3and(xy)3{{\left( x+y \right)}^{3}}and{{\left( x-y \right)}^{3}}