Question
Question: The sum of the three numbers is 6, twice the third number when added to the first number gives 7. On...
The sum of the three numbers is 6, twice the third number when added to the first number gives 7. On adding the sum of the second and third to thrice the first number, we get 12. Find the numbers, using the adjoint method.
Solution
Hint: We will first find the three equation with three variables using the given conditions and then use the equation AX=B, where X = \left[ {\begin{array}{*{20}{c}} a \\\ b \\\ c \end{array}} \right]. Then we will use formula of finding the inverse using the adjoint method is A−1=∣A∣adjA in the equation. Apply this formula, and then use the given conditions to find the required values.
Complete step by step answer:
Given that the sum of the three numbers is 6, twice the third number when added to the first number gives 7 and on adding the sum of the second and third to thrice the first number, we get 12.
Let us assume that the first number is a, the second number is b and the third number isc.
We will now find the equation when the sum of the three numbers is 6.
a+b+c=6 ......(1)
Now we will find the equation when twice the third number, when added to the first number, gives 7.
a+2c=7 ......(2)
We will now find the equation when adding the sum of the second and third to thrice the first number is equal to 12.
3a+b+c=12 ......(3)
We know that the equation of matrix using determinant property for finding the value of a, b, c, is AX=B where X = \left[ {\begin{array}{*{20}{c}} a \\\ b \\\ c \end{array}} \right].
Multiplying the A−1in the above equation of matrix AX=B on both sides , we get
A−1AX=A−1B ⇒X=A−1BUsing the equation (1), equation (2) and equation (3) to find the value of the matrices A and B, we get
1&1&1 \\\ 1&0&2 \\\ 3&1&1 \end{array}} \right]$$ $$B = \left[ {\begin{array}{*{20}{c}} 6 \\\ 7 \\\ {12} \end{array}} \right]$$ Substituting the values of $$A$$ and $$B$$ in equation $$AX = B$$, we get $$\left[ {\begin{array}{*{20}{c}} 1&1&1 \\\ 1&0&2 \\\ 3&1&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} a \\\ b \\\ c \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 6 \\\ 7 \\\ {12} \end{array}} \right]$$ We know that the formula to find the inverse of a matrix $$A$$ using the adjoint method is $${A^{ - 1}} = \dfrac{{adjA}}{{\left| A \right|}}$$. First, we will find the determinant of $$A$$.\left| A \right| = \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&0&2 \\
3&1&1
\end{array}} \right| \\
= 1\left( {0 - 2} \right) - 1\left( {1 - 6} \right) + 1\left( 1 \right) \\
= - 2 + 5 + 1 \\
= 4 \\
Co{f_{1,1}} = {\left( { - 1} \right)^{1 + 1}}\left| {\begin{array}{*{20}{c}}
0&2 \\
1&1
\end{array}} \right| \\
= 0 - 2 \\
= - 2 \\
Co{f_{1,2}} = {\left( { - 1} \right)^{1 + 2}}\left| {\begin{array}{*{20}{c}}
1&2 \\
3&1
\end{array}} \right| \\
= - 1\left( {1 - 6} \right) \\
= 5 \\
Co{f_{1,3}} = {\left( { - 1} \right)^{1 + 3}}\left| {\begin{array}{*{20}{c}}
1&0 \\
3&1
\end{array}} \right| \\
= 1 - 0 \\
= 1 \\
Co{f_{2,1}} = {\left( { - 1} \right)^{2 + 1}}\left| {\begin{array}{*{20}{c}}
1&1 \\
1&1
\end{array}} \right| \\
= - 1\left( {1 - 1} \right) \\
= 0 \\
Co{f_{2,2}} = {\left( { - 1} \right)^{2 + 2}}\left| {\begin{array}{*{20}{c}}
1&1 \\
3&1
\end{array}} \right| \\
= 1 - 3 \\
= - 2 \\
Co{f_{2,3}} = {\left( { - 1} \right)^{2 + 3}}\left| {\begin{array}{*{20}{c}}
1&1 \\
3&1
\end{array}} \right| \\
= - 1\left( {3 - 1} \right) \\
= - 2 \\
Co{f_{3,1}} = {\left( { - 1} \right)^{3 + 1}}\left| {\begin{array}{*{20}{c}}
1&1 \\
0&2
\end{array}} \right| \\
= 2 - 0 \\
= 2 \\
Co{f_{3,2}} = {\left( { - 1} \right)^{3 + 2}}\left| {\begin{array}{*{20}{c}}
1&1 \\
0&2
\end{array}} \right| \\
= - 1\left( {2 - 0} \right) \\
= - 2 \\
Co{f_{3,3}} = {\left( { - 1} \right)^{3 + 3}}\left| {\begin{array}{*{20}{c}}
1&1 \\
1&0
\end{array}} \right| \\
= 0 - 1 \\
= - 1 \\
adjA = {\left[ {\begin{array}{{20}{c}}
{ - 2}&5&1 \\
0&{ - 2}&2 \\
2&{ - 1}&{ - 1}
\end{array}} \right]^T} \\
= \left[ {\begin{array}{{20}{c}}
{ - 2}&0&2 \\
5&{ - 2}&{ - 1} \\
1&2&{ - 1}
\end{array}} \right] \\
\left[ {\begin{array}{{20}{c}}
a \\
b \\
c
\end{array}} \right] = \dfrac{1}{4}\left[ {\begin{array}{{20}{c}}
{ - 2}&0&2 \\
5&{ - 2}&{ - 1} \\
1&2&{ - 1}
\end{array}} \right]\left[ {\begin{array}{{20}{c}}
6 \\
7 \\
{12}
\end{array}} \right] \\
= \dfrac{1}{4}\left[ {\begin{array}{{20}{c}}
{ - 12 + 0 + 24} \\
{30 - 14 - 12} \\
{6 + 14 - 12}
\end{array}} \right] \\
= \dfrac{1}{4}\left[ {\begin{array}{{20}{c}}
{12} \\
4 \\
8
\end{array}} \right] \\
= \left[ {\begin{array}{{20}{c}}
{\dfrac{{12}}{4}} \\
{\dfrac{4}{4}} \\
{\dfrac{8}{4}}
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
3 \\
1 \\
2
\end{array}} \right] \\