Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

The sum of the third and the seventh terms of an AP is 6 and their product is 8. Find the sum of first sixteen terms of the AP.

Answer

We know that,
an=a+(n1)da_n = a + (n − 1) d
a3=a+(31)da_3 = a + (3 − 1) d
a3=a+2da_3 = a + 2d
Similarly, a7=a+6da_7 = a + 6d
Given that,
a3+a7=6a_3 + a_7 = 6
(a+2d)+(a+6d)=6(a + 2d) + (a + 6d) = 6
2a+8d=62a + 8d = 6
a+4d=3a + 4d = 3
a=34da = 3 − 4d ..…… (i)
Also,
it is given that (a3)×(a7)=8(a_3) × (a_7) = 8
(a+2d)×(a+6d)=8(a + 2d) × (a + 6d) = 8
From equation (i),
(34d+2d)(34d+6d)=8(3-4d+2d)(3-4d+6d) = 8
(32d)(3+2d)=8(3-2d)(3+2d) = 8
94d2=89-4d^2 = 8
4d2=984d^2 = 9-8
4d2=14d^2 = 1
d2=14d^2 = \frac 14
d=±12d = ±\frac 12
d=12d = \frac 12 or 12-\frac 12
From equation number (i),
(Where d=12d = \frac 12)
a=34da = 3-4d
a=34(12)a = 3-4(\frac 12)
a=32a = 3-2
a=1a = -1
(Where d=12d =- \frac 12)
a=34(12)a = 3-4(-\frac 12)
a=3+2a = 3+2
a=5a = 5
Sn=n2[2a+(n1)d]S_n = \frac n2[2a+(n-1)d]
(Where a=1a = 1 and d=12d =\frac 12)
S16=162[2(1)+(161)(12)]S_{16} = \frac {16}{2}[2(1)+(16-1)(\frac 12)]

S16=8[2+152]S_{16} = 8[2+\frac {15}{2}]
S16=4×19S_{16} = 4 \times 19
S16=76S_{16} = 76
(where a=5a = 5 and d=12d =- \frac 12)
S16=162[2(5)+(161)(12)]S_{16} = \frac {16}{2}[2(5)+(16-1)(-\frac 12)]

S16=8[10+15(12)]S_{16} = 8[10+15(-\frac 12)]
S16=8×52S_{16}= 8 \times \frac 52
S16=20S_{16} = 20