Solveeit Logo

Question

Question: The sum of the squares of three distinct real number which are in G.P. is S<sup>2</sup>. If their su...

The sum of the squares of three distinct real number which are in G.P. is S2. If their sum is a S then a2 belongs to –

A

(13,1)(1,3)\left( \frac{1}{3},1 \right) \cup (1,3)

B

(13,1)(3,)\left( \frac{1}{3},1 \right) \cup (3,\infty)

C

(,13)(3,)\left( –\infty,\frac{1}{3} \right) \cup (3,\infty)

D

None of these

Answer

(13,1)(1,3)\left( \frac{1}{3},1 \right) \cup (1,3)

Explanation

Solution

Letar\frac{a}{r}, a , ar, three terms in G.P.

given a2 (1r2+1+r2)\left( \frac{1}{r^{2}} + 1 + r^{2} \right)= s2 ….(1)

and a (1r+r+1)\left( \frac{1}{r} + r + 1 \right) = a s ….(2)

divide (1) by (2)

sα\frac{s}{\alpha}=a(1r+r1)(1r+r+1)(1r+r+1)\frac{a\left( \frac{1}{r} + r - 1 \right)\left( \frac{1}{r} + r + 1 \right)}{\left( \frac{1}{r} + r + 1 \right)} = a(1r+r1)a\left( \frac{1}{r} + r - 1 \right) ….(3)

from (2) & (3)

a = (α212α)s\left( \frac{\alpha^{2} - 1}{2\alpha} \right)s

put in equation (1)

[1r2+1+r2]=s2\left\lbrack \frac{1}{r^{2}} + 1 + r^{2} \right\rbrack = s^{2}

Ž (1rr)2+3\left( \frac{1}{r} - r \right)^{2} + 3 = 4α2s2(α21)2s2\frac{4\alpha^{2}s^{2}}{(\alpha^{2} - 1)^{2}s^{2}}

Ž 4α2(α21)2\frac{4\alpha^{2}}{(\alpha^{2} - 1)^{2}}> 3 Ž 3a4 – 10 a 2 + 3 < 0

Ž (3 a 2 – 1) (a 2 – 3) < 0

Ž 13\frac{1}{3} < a 2 < 3 , [a 2 ¹ 1 Q we get a = 0]

a 2 Ī (13,1)\left( \frac{1}{3},1 \right)Č (1, 3).