Solveeit Logo

Question

Mathematics Question on complex numbers

The sum of the square of the modulus of the elements in the set z=a+ib:a,bZ,zC,z11,z5z5i\\{z = a + ib : a, b \in \mathbb{Z}, z \in \mathbb{C}, |z-1| \leq 1, |z-5| \leq |z-5i|\\} is ________.

Answer

Step 1: Analyze the conditions

The first condition is:

z11|z - 1| \leq 1.

Substitute z=x+iyz = x + iy, where x,yRx, y \in \mathbb{R}:

z1=(x1)2+y21|z - 1| = \sqrt{(x - 1)^2 + y^2} \leq 1.

Squaring both sides:

(x1)2+y21.(x - 1)^2 + y^2 \leq 1. (1)

The second condition is:

z5z5i.|z - 5| \leq |z - 5i|.

Substitute z=x+iyz = x + iy:

(x5)2+y2x2+(y5)2.\sqrt{(x - 5)^2 + y^2} \leq \sqrt{x^2 + (y - 5)^2}.

Squaring both sides:

(x5)2+y2x2+(y5)2.(x - 5)^2 + y^2 \leq x^2 + (y - 5)^2.

Simplify:

10x10y0.-10x - 10y \leq 0.

x+y0.x + y \geq 0. (2)

Step 2: Solve the inequalities

From condition (1), (x1)2+y21(x - 1)^2 + y^2 \leq 1, the points lie within or on a circle centered at (1,0)(1, 0) with radius 1.

From condition (2), x+y0x + y \geq 0, the points lie above or on the line y=xy = -x.

Step 3: Discretize x,yx, y as integers

Since x,yZx, y \in \mathbb{Z}, we identify the integer points satisfying both conditions. These points are:

(0,0),(1,0),(2,0),(1,1),(1,1).(0, 0), (1, 0), (2, 0), (1, 1), (1, -1).

Step 4: Compute the square of the modulus

For each point zk=xk+iykz_k = x_k + iy_k, the modulus squared is zk2=xk2+yk2|z_k|^2 = x_k^2 + y_k^2. Calculate for each point:

  • z12=0+0i2=02+02=0,|z_1|^2 = |0 + 0i|^2 = 0^2 + 0^2 = 0,
  • z22=1+0i2=12+02=1,|z_2|^2 = |1 + 0i|^2 = 1^2 + 0^2 = 1,
  • z32=2+0i2=22+02=4,|z_3|^2 = |2 + 0i|^2 = 2^2 + 0^2 = 4,
  • z42=1+i2=12+12=2,|z_4|^2 = |1 + i|^2 = 1^2 + 1^2 = 2,
  • z52=1i2=12+(1)2=2.|z_5|^2 = |1 - i|^2 = 1^2 + (-1)^2 = 2.

Step 5: Sum the squares of the modulus

k=15zk2=0+1+4+2+2=9.\sum_{k=1}^{5} |z_k|^2 = 0 + 1 + 4 + 2 + 2 = 9.

Final Answer is 99.