Solveeit Logo

Question

Question: The sum of the series $S = cos^4 \theta + cos^4 (\theta + \frac{2\pi}{n}) + cos^4 (\theta + \frac{4\...

The sum of the series S=cos4θ+cos4(θ+2πn)+cos4(θ+4πn)+uptonS = cos^4 \theta + cos^4 (\theta + \frac{2\pi}{n}) + cos^4 (\theta + \frac{4\pi}{n}) + --- upto n term is

A

n8\frac{n}{8}

B

3n8\frac{3n}{8}

C

5n8\frac{5n}{8}

D

7n8\frac{7n}{8}

Answer

3n8\frac{3n}{8}

Explanation

Solution

We use the identity:

cos4x=38+12cos2x+18cos4x.\cos^4 x = \frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x.

Substitute x=θ+2kπnx = \theta + \frac{2k\pi}{n} for k=0,1,2,,n1k = 0, 1, 2, \dots, n-1. Then,

S=k=0n1cos4(θ+2kπn)=k=0n1[38+12cos(2θ+4kπn)+18cos(4θ+8kπn)].S = \sum_{k=0}^{n-1} \cos^4\left(\theta + \frac{2k\pi}{n}\right) = \sum_{k=0}^{n-1} \left[\frac{3}{8} + \frac{1}{2}\cos\left(2\theta+ \frac{4k\pi}{n}\right) + \frac{1}{8}\cos\left(4\theta+ \frac{8k\pi}{n}\right)\right].

Splitting the sum:

S=n38+12k=0n1cos(2θ+4kπn)+18k=0n1cos(4θ+8kπn).S = n\cdot\frac{3}{8} + \frac{1}{2}\sum_{k=0}^{n-1}\cos\left(2\theta+ \frac{4k\pi}{n}\right) + \frac{1}{8}\sum_{k=0}^{n-1}\cos\left(4\theta+ \frac{8k\pi}{n}\right).

Since the angles in the cosine sums are equally spaced over a full period, both cosine summations vanish:

k=0n1cos(2θ+4kπn)=0andk=0n1cos(4θ+8kπn)=0.\sum_{k=0}^{n-1}\cos\left(2\theta+ \frac{4k\pi}{n}\right) = 0 \quad \text{and} \quad \sum_{k=0}^{n-1}\cos\left(4\theta+ \frac{8k\pi}{n}\right) = 0.

Thus,

S=3n8.S = \frac{3n}{8}.