Solveeit Logo

Question

Question: The sum of the series \(\log_{4}2 - \log_{8}2 + \log_{16}2....\) is. (\(\log_{4}2 - \log_{8}2 + \lo...

The sum of the series log42log82+log162....\log_{4}2 - \log_{8}2 + \log_{16}2.... is.

(log42log82+log162....\log_{4}2 - \log_{8}2 + \log_{16}2.... dk ;ksx gSA)

A

e2e^{2}

B

loge2\log_{e}2

C

loge32\log_{e}3 - 2

D

1loge21 - \log_{e}2

Answer

1loge21 - \log_{e}2

Explanation

Solution

Since 12+14+18(2)!+116(3)!+132(4)!+......=\frac{1}{2} + \frac{1}{4} + \frac{1}{8(2)!} + \frac{1}{16(3)!} + \frac{1}{32(4)!} + ......\infty =and ee.

e\sqrt{e}

Also e2\frac{\sqrt{e}}{2}

Putting 2121!+3122!+4123!+5124!+......\frac{2\frac{1}{2}}{1!} + \frac{3\frac{1}{2}}{2!} + \frac{4\frac{1}{2}}{3!} + \frac{5\frac{1}{2}}{4!} + ......\infty.