Solveeit Logo

Question

Question: The sum of the series \({\log _9}3 + {\log _{27}}3 - {\log _{81}}3 + {\log _{243}}3 - .....\) is ...

The sum of the series log93+log273log813+log2433.....{\log _9}3 + {\log _{27}}3 - {\log _{81}}3 + {\log _{243}}3 - ..... is
A)1loge2A)1 - lo{g_e}2
B)1+loge2B)1 + lo{g_e}2
C)loge2C)lo{g_e}2
D)1+loge3D)1 + lo{g_e}3

Explanation

Solution

First. We need to know about the concepts of logarithm operations.
We will first understand what the logarithmic operator represents in mathematics. A logarithm function or log operator is used when we have to deal with the powers of a number, to understand it better which is logxm=mlogx\log {x^m} = m\log x
Also, we will make use of the binomial expansion of the logarithm function which is given below.
Formula used:

Using the logarithm law, logyx=logxlogy{\log _y}x = \dfrac{{\log x}}{{\log y}}
loge(1+x)=xx22+x33x44+....{\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....
logxm=mlogx\log {x^m} = m\log x

Complete step-by-step solution:
Since given that we have the sum of the series log93+log273log813+log2433.....{\log _9}3 + {\log _{27}}3 - {\log _{81}}3 + {\log _{243}}3 - ..... we will convert it into some form and then we will apply the logarithm formulas to obtain the result.
Since we know that logyx=logxlogy{\log _y}x = \dfrac{{\log x}}{{\log y}} and by using this formula we get log93+log273log813+log2433.....{\log _9}3 + {\log _{27}}3 - {\log _{81}}3 + {\log _{243}}3 - .....
=log3log9+log3log27log3log81+log3log243....= \dfrac{{\log 3}}{{\log 9}} + \dfrac{{\log 3}}{{\log 27}} - \dfrac{{\log 3}}{{\log 81}} + \dfrac{{\log 3}}{{\log 243}} - ....
Since all the denominator terms are multiplications of the number 33 then we are able to change all the numbers with respect to the square, cube, … of the number nine.
Thus, we have 9=32,27=33,81=34,243=359 = {3^2},27 = {3^3},81 = {3^4},243 = {3^5} and hence we get log3log9+log3log27log3log81+log3log243....\dfrac{{\log 3}}{{\log 9}} + \dfrac{{\log 3}}{{\log 27}} - \dfrac{{\log 3}}{{\log 81}} + \dfrac{{\log 3}}{{\log 243}} - ....
=log3log32+log3log33log3log34+log3log35...= \dfrac{{\log 3}}{{\log {3^2}}} + \dfrac{{\log 3}}{{\log {3^3}}} - \dfrac{{\log 3}}{{\log {3^4}}} + \dfrac{{\log 3}}{{\log {3^5}}} - ...
Again, applying the logarithm formula of logxm=mlogx\log {x^m} = m\log x then we get log3log32+log3log33log3log34+log3log35....\dfrac{{\log 3}}{{\log {3^2}}} + \dfrac{{\log 3}}{{\log {3^3}}} - \dfrac{{\log 3}}{{\log {3^4}}} + \dfrac{{\log 3}}{{\log {3^5}}} - ....
=log32log3+log33log3log34log3+log35log3...= \dfrac{{\log 3}}{{2\log 3}} + \dfrac{{\log 3}}{{3\log 3}} - \dfrac{{\log 3}}{{4\log 3}} + \dfrac{{\log 3}}{{5\log 3}} - ...
Now cancel the common terms we have log32log3+log33log3log34log3+log35log3...\dfrac{{\log 3}}{{2\log 3}} + \dfrac{{\log 3}}{{3\log 3}} - \dfrac{{\log 3}}{{4\log 3}} + \dfrac{{\log 3}}{{5\log 3}} - ...
=12+1314+15....= \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....
Now add and subtract 12\dfrac{1}{2} on the above values, so that the value will not be changed and we are able to find its generalized form.
Thus, we get 12+1314+15....\dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....
=12+1212+1314+15....= \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - .... and since 12+12=1\dfrac{1}{2} + \dfrac{1}{2} = 1
Then we have 12+1212+1314+15....\dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....
=112+1314+15....= 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....
We know the binomial expansion of the logarithm is loge(1+x)=xx22+x33x44+....{\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + .... substitute the value x=1x = 1 then we get loge(1+x)=xx22+x33x44+....{\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....
=loge(1+1)=1122+133144+....= {\log _e}(1 + 1) = 1 - \dfrac{{{1^2}}}{2} + \dfrac{{{1^3}}}{3} - \dfrac{{{1^4}}}{4} + ....
Thus, we clearly see the expansion that we found 112+1314+15....1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - .... and hence we get 112+1314+15....=loge21 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - .... = {\log _e}2
Therefore, the option C)loge2C)lo{g_e}2 is correct.

Note: We simply substitute the value of x=1x = 1 on the expansion then we get loge(1+x)=xx22+x33x44+....{\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....
loge(1+1)=1122+133144+....\Rightarrow {\log _e}(1 + 1) = 1 - \dfrac{{{1^2}}}{2} + \dfrac{{{1^3}}}{3} - \dfrac{{{1^4}}}{4} + .... but we need to find this simplification so that only we can able to substitute the value of x=1x = 1 and then we easily obtained the required result
The logarithm function we used logxm=mlogx\log {x^m} = m\log x and logarithm derivative function can be represented as ddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x}