Solveeit Logo

Question

Mathematics Question on Sequence and series

The sum of the series (1+(logen)22!+(logen)44!+...)\left( 1+\frac{{{({{\log }_{e}}\,n)}^{2}}}{2!}+\frac{{{({{\log }_{e}}n)}^{4}}}{4!}+... \right) is

A

n+1nn+\frac{1}{n}

B

n2+12n\frac{n'}{2}+\frac{1}{2n}

C

loge11(logen)2{{\log }_{e}}\frac{1}{1-{{({{\log }_{e}}n)}^{2}}}

D

12loge11(logen)2\frac{1}{2}{{\log }_{e}}\,\frac{1}{1-{{({{\log }_{e}}\,n)}^{2}}}

Answer

n2+12n\frac{n'}{2}+\frac{1}{2n}

Explanation

Solution

We know that, 1+x22!+x44!2+....=ex+ex1+\frac{{{x}^{2}}}{2!}+\frac{{{x}^{4}}}{4!2}+....=\frac{{{e}^{x}}+{{e}^{-x}}}{{}}
\therefore a+(logen)22!+(logen)44!+....a+\frac{{{({{\log }_{e}}n)}^{2}}}{2!}+\frac{{{({{\log }_{e}}n)}^{4}}}{4!}+....
=elogen+elogen2=\frac{{{e}^{{{\log }_{e}}n}}+{{e}^{-{{\log }_{e}}n}}}{2}
=n+1n2=\frac{n+\frac{1}{n}}{2}
=n2+12n=\frac{n}{2}+\frac{1}{2n}