Question
Question: The sum of the series $\frac{1}{x+1}+\frac{2}{x^2+1}+\frac{2^2}{x^4+1}+....+\frac{2^{100}}{x^{2^{100...
The sum of the series x+11+x2+12+x4+122+....+x2100+12100 when x = 2 is:

1+\frac{2^{101}}{4^{101}-1}
1+\frac{2^{100}}{4^{101}-1}
1-\frac{2^{100}}{4^{100}-1}
1-\frac{2^{101}}{4^{2^{100}}-1}
1-\frac{2^{101}}{4^{2^{100}}-1}
Solution
The given series is S=x+11+x2+12+x4+122+....+x2100+12100. This can be written as S=∑n=0100x2n+12n.
We use the identity: y+12n=y−12n−y2−12n+1 Let y=x2n. Then y2=(x2n)2=x2⋅2n=x2n+1. Substituting this into the identity, we get: x2n+12n=x2n−12n−x2n+1−12n+1 Let an=x2n−12n. Then the general term of the series can be written as Tn=an−an+1.
The sum of the series is a telescoping sum: S=∑n=0100Tn=∑n=0100(an−an+1) S=(a0−a1)+(a1−a2)+(a2−a3)+⋯+(a100−a101) S=a0−a101 Now, we find a0 and a101: a0=x20−120=x1−11=x−11 a101=x2101−12101
So, the sum is: S=x−11−x2101−12101 We are given x=2. Substituting x=2: S=2−11−22101−12101 S=1−22101−12101 To match the options, we rewrite the term 22101: 22101=2(2⋅2100)=(22)2100=42100. Therefore, the sum is: S=1−42100−12101