Solveeit Logo

Question

Question: The sum of the series $\frac{1}{x+1}+\frac{2}{x^2+1}+\frac{2^2}{x^4+1}+....+\frac{2^{100}}{x^{2^{100...

The sum of the series 1x+1+2x2+1+22x4+1+....+2100x2100+1\frac{1}{x+1}+\frac{2}{x^2+1}+\frac{2^2}{x^4+1}+....+\frac{2^{100}}{x^{2^{100}}+1} when x = 2 is:

A

1+\frac{2^{101}}{4^{101}-1}

B

1+\frac{2^{100}}{4^{101}-1}

C

1-\frac{2^{100}}{4^{100}-1}

D

1-\frac{2^{101}}{4^{2^{100}}-1}

Answer

1-\frac{2^{101}}{4^{2^{100}}-1}

Explanation

Solution

The given series is S=1x+1+2x2+1+22x4+1+....+2100x2100+1S = \frac{1}{x+1}+\frac{2}{x^2+1}+\frac{2^2}{x^4+1}+....+\frac{2^{100}}{x^{2^{100}}+1}. This can be written as S=n=01002nx2n+1S = \sum_{n=0}^{100} \frac{2^n}{x^{2^n}+1}.

We use the identity: 2ny+1=2ny12n+1y21\frac{2^n}{y+1} = \frac{2^n}{y-1} - \frac{2^{n+1}}{y^2-1} Let y=x2ny = x^{2^n}. Then y2=(x2n)2=x22n=x2n+1y^2 = (x^{2^n})^2 = x^{2 \cdot 2^n} = x^{2^{n+1}}. Substituting this into the identity, we get: 2nx2n+1=2nx2n12n+1x2n+11\frac{2^n}{x^{2^n}+1} = \frac{2^n}{x^{2^n}-1} - \frac{2^{n+1}}{x^{2^{n+1}}-1} Let an=2nx2n1a_n = \frac{2^n}{x^{2^n}-1}. Then the general term of the series can be written as Tn=anan+1T_n = a_n - a_{n+1}.

The sum of the series is a telescoping sum: S=n=0100Tn=n=0100(anan+1)S = \sum_{n=0}^{100} T_n = \sum_{n=0}^{100} (a_n - a_{n+1}) S=(a0a1)+(a1a2)+(a2a3)++(a100a101)S = (a_0 - a_1) + (a_1 - a_2) + (a_2 - a_3) + \dots + (a_{100} - a_{101}) S=a0a101S = a_0 - a_{101} Now, we find a0a_0 and a101a_{101}: a0=20x201=1x11=1x1a_0 = \frac{2^0}{x^{2^0}-1} = \frac{1}{x^1-1} = \frac{1}{x-1} a101=2101x21011a_{101} = \frac{2^{101}}{x^{2^{101}}-1}

So, the sum is: S=1x12101x21011S = \frac{1}{x-1} - \frac{2^{101}}{x^{2^{101}}-1} We are given x=2x=2. Substituting x=2x=2: S=1212101221011S = \frac{1}{2-1} - \frac{2^{101}}{2^{2^{101}}-1} S=12101221011S = 1 - \frac{2^{101}}{2^{2^{101}}-1} To match the options, we rewrite the term 221012^{2^{101}}: 22101=2(22100)=(22)2100=421002^{2^{101}} = 2^{(2 \cdot 2^{100})} = (2^2)^{2^{100}} = 4^{2^{100}}. Therefore, the sum is: S=12101421001S = 1 - \frac{2^{101}}{4^{2^{100}}-1}