Solveeit Logo

Question

Question: The sum of the series $\frac{1}{x+1}+\frac{2}{x^2+1}+\frac{2^2}{x^4+1}+....+\frac{2^{100}}{x^{2^{100...

The sum of the series 1x+1+2x2+1+22x4+1+....+2100x2100+1\frac{1}{x+1}+\frac{2}{x^2+1}+\frac{2^2}{x^4+1}+....+\frac{2^{100}}{x^{2^{100}}+1} when x = 2 is: [JEE Main-2021(August)]

A

1+210141011\frac{2^{101}}{4^{101}-1}

B

1+210041011\frac{2^{100}}{4^{101}-1}

C

1-210041001\frac{2^{100}}{4^{100}-1}

D

1-2101421001\frac{2^{101}}{4^{2^{100}}-1}

Answer

1-2101421001\frac{2^{101}}{4^{2^{100}}-1}

Explanation

Solution

The given series is S=1x+1+2x2+1+22x4+1+....+2100x2100+1S = \frac{1}{x+1}+\frac{2}{x^2+1}+\frac{2^2}{x^4+1}+....+\frac{2^{100}}{x^{2^{100}}+1}. This can be written in summation notation as S=k=01002kx2k+1S = \sum_{k=0}^{100} \frac{2^k}{x^{2^k}+1}.

We use the algebraic identity: 1y11y+1=(y+1)(y1)(y1)(y+1)=2y21\frac{1}{y-1} - \frac{1}{y+1} = \frac{(y+1)-(y-1)}{(y-1)(y+1)} = \frac{2}{y^2-1}. Rearranging this identity to isolate the term with (y+1)(y+1) in the denominator, we get: 1y+1=1y12y21\frac{1}{y+1} = \frac{1}{y-1} - \frac{2}{y^2-1}.

Let y=x2ky = x^{2^k}. Then y2=(x2k)2=x22k=x2k+1y^2 = (x^{2^k})^2 = x^{2 \cdot 2^k} = x^{2^{k+1}}. Substituting y=x2ky = x^{2^k} into the rearranged identity: 1x2k+1=1x2k12x2k+11\frac{1}{x^{2^k}+1} = \frac{1}{x^{2^k}-1} - \frac{2}{x^{2^{k+1}}-1}.

Now, multiply both sides by 2k2^k to match the numerator of the terms in our series: 2kx2k+1=2kx2k12k2x2k+11=2kx2k12k+1x2k+11\frac{2^k}{x^{2^k}+1} = \frac{2^k}{x^{2^k}-1} - \frac{2^k \cdot 2}{x^{2^{k+1}}-1} = \frac{2^k}{x^{2^k}-1} - \frac{2^{k+1}}{x^{2^{k+1}}-1}.

Now, we can write the sum SS using this expression: S=k=0100(2kx2k12k+1x2k+11)S = \sum_{k=0}^{100} \left( \frac{2^k}{x^{2^k}-1} - \frac{2^{k+1}}{x^{2^{k+1}}-1} \right).

This is a telescoping sum. Let Ak=2kx2k1A_k = \frac{2^k}{x^{2^k}-1}. The sum becomes k=0100(AkAk+1)\sum_{k=0}^{100} (A_k - A_{k+1}). The sum of such a series is A0A101A_0 - A_{101}.

A0=20x201=1x11=1x1A_0 = \frac{2^0}{x^{2^0}-1} = \frac{1}{x^1-1} = \frac{1}{x-1}. A101=2101x21011A_{101} = \frac{2^{101}}{x^{2^{101}}-1}.

So, the sum of the series is: S=1x12101x21011S = \frac{1}{x-1} - \frac{2^{101}}{x^{2^{101}}-1}.

We are asked to find the sum when x=2x=2. Substitute x=2x=2 into the formula: S=1212101221011S = \frac{1}{2-1} - \frac{2^{101}}{2^{2^{101}}-1} S=12101221011S = 1 - \frac{2^{101}}{2^{2^{101}}-1}.

Let's simplify the denominator of option (4): 421001=(22)21001=2221001=2210114^{2^{100}}-1 = (2^2)^{2^{100}}-1 = 2^{2 \cdot 2^{100}}-1 = 2^{2^{101}}-1. So, option (4) is 121012210111-\frac{2^{101}}{2^{2^{101}}-1}.

This matches our derived sum.