Solveeit Logo

Question

Question: The sum of the series \(\frac{1^{2}}{1 \cdot 2!} + \frac{1^{2} + 2^{2}}{2 \cdot 3!} + \frac{1^{2} + ...

The sum of the series 1212!+12+2223!+12+22+3234!+..+12+22+...+n2n(n+1)!+...\frac{1^{2}}{1 \cdot 2!} + \frac{1^{2} + 2^{2}}{2 \cdot 3!} + \frac{1^{2} + 2^{2} + 3^{2}}{3 \cdot 4!} + .. + \frac{1^{2} + 2^{2} + ... + n^{2}}{n \cdot (n + 1)!} + ...\infty

Equals.

A

e2e^{2}

B

12(e+e1)2\frac{1}{2}(e + e^{- 1})^{2}

C

3e16\frac{3e - 1}{6}

D

4e+16\frac{4e + 1}{6}

Answer

3e16\frac{3e - 1}{6}

Explanation

Solution

1loge21 - \log_{e}2

log3elog9e+log27e....\log_{3}e - \log_{9}e + \log_{27}e.... = log32\log_{3}2

= log23\log_{2}3.