Solveeit Logo

Question

Mathematics Question on Sequence and series

The sum of the series 12+34+78+1516+...\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+... upto nn term is

A

n1+12nn-1+\frac{1}{{{2}^{n}}}

B

n+12nn+\frac{1}{{{2}^{n}}}

C

2n+12n2n+\frac{1}{{{2}^{n}}}

D

n+1+12nn+1+\frac{1}{{{2}^{n}}}

Answer

n1+12nn-1+\frac{1}{{{2}^{n}}}

Explanation

Solution

12+34+78+1516+\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots upto nn terms
=(112)+(114)+(118)+=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+\ldots upto nn terms
=(1+1+n=(1+1+\ldots n times ))
[12+(12)2+(12)3+n-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\ldots n\right. terms ]]
=n12[1(12)n](112)=n-\frac{\frac{1}{2}\left[1-\left(\frac{1}{2}\right)^{n}\right]}{\left(1-\frac{1}{2}\right)}
=n1+12n=n-1+\frac{1}{2^{n}}
Alternate Method :

=1(2n1)21=2n1=\frac{1\left(2^{n}-1\right)}{2-1}=2^{n}-1
\therefore nth term of given series,
Tn=2n12n=112nT_{n}=\frac{2^{n}-1}{2^{n}}=1-\frac{1}{2^{n}}
Required sum =Tn=(112n)=\sum T_{n}=\sum\left(1-\frac{1}{2^{n}}\right)
=1(12n)=\sum 1-\sum\left(\frac{1}{2^{n}}\right)
=n(12+122++12n)=n-\left(\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n}}\right)
=n12[1(12)n](112)=n-\frac{\frac{1}{2}\left[1-\left(\frac{1}{2}\right)^{n}\right]}{\left(1-\frac{1}{2}\right)}
=n1+12n=n-1+\frac{1}{2^{n}}