Solveeit Logo

Question

Question: The sum of the series \(\frac { 1 } { 2 } + \frac { 1 } { 3 } + \frac { 1 } { 6 } + \ldots \ldots\)...

The sum of the series 12+13+16+\frac { 1 } { 2 } + \frac { 1 } { 3 } + \frac { 1 } { 6 } + \ldots \ldots to 9 terms is.

A

56- \frac { 5 } { 6 }

B

12- \frac { 1 } { 2 }

C

1

D

32- \frac { 3 } { 2 }

Answer

32- \frac { 3 } { 2 }

Explanation

Solution

Given series 12+13+16+\frac { 1 } { 2 } + \frac { 1 } { 3 } + \frac { 1 } { 6 } + \ldots \ldots

Here a=12a = \frac { 1 } { 2 } , common difference d=16d = - \frac { 1 } { 6 } and n=9n = 9 .

\Rightarrow S9=92[2×12+(91)(16)]=32S _ { 9 } = \frac { 9 } { 2 } \left[ 2 \times \frac { 1 } { 2 } + ( 9 - 1 ) \left( - \frac { 1 } { 6 } \right) \right] = - \frac { 3 } { 2 } .