Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

The sum of the series 12.3+14.5+16.7+....+\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+....+\infty =

A

log(2e)log(2e)

B

log(e/2)log(e/2)

C

log(4/e)log(4/e)

D

NoneoftheseNone\, of \,these

Answer

log(e/2)log(e/2)

Explanation

Solution

12.3+14.5+16.7++\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\ldots+\infty Here, Tn=12n.(2n+1)T_{n}=\frac{1}{2n.\left(2n+1\right)} Tn=12n12n+1T_{n}=\frac{1}{2n}-\frac{1}{2n+1} Tn=12n12n+1T_{n}=\frac{1}{2n}-\frac{1}{2n+1} T1=1213T_{1}=\frac{1}{2}-\frac{1}{3} T2=1415T_{2}=\frac{1}{4}-\frac{1}{5} T3=1617T_{3}=\frac{1}{6}-\frac{1}{7}\ldots\infty \ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots \ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots Adding all, (T1+T2+T3++T)\left(T_{1}+T_{2}+T_{3}+\ldots+T_{\infty}\right) =(12+14+16+)(13+15+17+)(i)=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots\right)-\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots\right)\ldots\left(i\right) We know that, log2=112+1314+15log\,2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots\infty From E (i)\left(i\right), (T1+T2++T)=(12+1314+15)\left(T_{1}+T_{2}+\ldots+T_{\infty}\right)=-\left(-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots\infty\right) =-\left\\{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots\infty\right)-1\right\\} =-\left\\{log_{e}\,2-log_{e} e\right\\} =log(2/e)=-log\left(2/ e\right) =log(e/2)=log \left(e/ 2\right)