Question
Mathematics Question on Sum of First n Terms of an AP
The sum of the series 1×2125C0+2×3125C1+3×4125C2+.........+26×27125C25
26×27227−1
26×27227−28
21(2627226+1)
52226−1
26×27227−28
Solution
Given series is, 1×2125C0+2×3125C1+3×4125C2 +…+26×27125C25 \because \int_\limits{0}^{x}(1+x)^{25} d x=\int_\limits{0}^{x}\left[{ }^{25} C_{0}+{ }^{25} C_{1} x\right. +25C2x2+…+25C25x25]dx On integrating w.r.t. x, taking limits 0 to x, we get [26(1+x)26]0x =[25C0x+25C1⋅2x2+25C23x3+…+25C25⋅26x26]0x \Rightarrow \left\\{\frac{1}{26}(1+x)^{26}-\frac{1}{26}\right\\} =25C0x+25C1⋅2x2+…+25C25⋅26x26 Again, integrating w.r.t. x, taking limits 0 to 1 , we get 261∫01[1+x)26−1]dx = \int_ \limits{0}^{1}\left[{ }^{25} C_{0} x+{ }^{25} C_{1} \cdot \frac{x^{2}}{2}+\ldots+{ }^{25} C_{25} \frac{x^{26}}{26}\right] d x ⇒261[27(1+x)27−x]01 =[25C02x2+25C1⋅2×3x3+…+25C2526×27x27]01 \Rightarrow \frac{1}{26}\left\\{\frac{2^{27}}{27}-1-\frac{1}{27}\right\\}=\frac{1}{2}{ }^{25} C_{0}+\frac{1}{2 \times 3} \cdot{ }^{25} C_{1} +…+26×271⋅25C25 ∴1×21⋅25C0+2×3125C1+3×4125C2 +…+26×271⋅25C25=26×27227−28