Solveeit Logo

Question

Mathematics Question on Sequence and series

The sum of the series 11312+14+21322+24+31332+34+ up to 10 terms\frac{1}{1 - 3 \cdot 1^2 + 1^4} + \frac{2}{1 - 3 \cdot 2^2 + 2^4} + \frac{3}{1 - 3 \cdot 3^2 + 3^4} + \ldots \text{ up to 10 terms} is

A

45109\frac{45}{109}

B

45109-\frac{45}{109}

C

55109\frac{55}{109}

D

55109-\frac{55}{109}

Answer

55109-\frac{55}{109}

Explanation

Solution

General term of the sequence,

Tr=r13r2+r4T_r = \frac{r}{1 - 3r^2 + r^4}

Tr=rr43r2+1r2T_r = \frac{r}{r^4 - 3r^2 + 1 - r^2}

Tr=r(r21)2r2T_r = \frac{r}{(r^2 - 1)^2 - r^2}

Tr=r(r2r1)(r2+r1)T_r = \frac{r}{(r^2 - r - 1)(r^2 + r - 1)}

Tr=12[1(r2r1)1(r2+r1)]T_r = \frac{1}{2} \left[ \frac{1}{(r^2 - r - 1)} - \frac{1}{(r^2 + r - 1)} \right]

Sum of 10 terms,

r=110Tr=12[111109]=55109\sum_{r=1}^{10} T_r = \frac{1}{2} \left[ \frac{1}{-1} - \frac{1}{109} \right] = \frac{55}{109}