Solveeit Logo

Question

Mathematics Question on Series

The sum of the series r=0n(1)rnCr(12r+3r22r+7r23r+15r24r+...mterms) \displaystyle\sum_{r = 0}^{n}\left(-1\right)^{r}\, ^{n}C_{r}\left(\frac{1}{2^{r}}+\frac{3^{r}}{2^{2r}}+\frac{7^{r}}{2^{3r}}+\frac{15^{r}}{2^{4r}}+...m \text{terms}\right) is

A

2mn12mn(2n1)\frac{2^{mn}-1}{2^{mn}\left(2^{n}-1\right)}

B

2mn12n1\frac{2^{mn}-1}{2^{n}-1}

C

2mn+12n+1\frac{2^{mn}+1}{2^{n}+1}

D

None of these

Answer

2mn12mn(2n1)\frac{2^{mn}-1}{2^{mn}\left(2^{n}-1\right)}

Explanation

Solution

r=0n(1)rnCr\displaystyle\sum_{r=0}^{n}(-1)^{r \cdot n} C_{r}
(12r+3r22r+7r23r+\left(\frac{1}{2^{r}}+\frac{3^{r}}{2^{2 r}}+\frac{7^{r}}{2^{3 r}}+\ldots\right. upto mm terms ))
=r=0n(1)rnCr12r+r=0n(1)rnCr3r22r=\displaystyle\sum_{r=0}^{n}(-1)^{r} \cdot{ }^{n} C_{r} \frac{1}{2^{r}}+\displaystyle\sum_{r=0}^{n}(-1)^{r} \cdot{ }^{n} C_{r} \cdot \frac{3^{r}}{2^{2 r}}
+r=0n(1)rnCr7r23r++\displaystyle\sum_{r=0}^{n}(-1)^{r} \cdot{ }^{n} C_{r} \cdot \frac{7^{r}}{2^{3 r}}+\ldots
=(112)n+(134)n+(178)n+=\left(1-\frac{1}{2}\right)^{n}+\left(1-\frac{3}{4}\right)^{n}+\left(1-\frac{7}{8}\right)^{n}+ upto mm terms
=12n+14n+18n+=\frac{1}{2^{n}}+\frac{1}{4^{n}}+\frac{1}{8^{n}}+\ldots upto mm terms
=12n(112mn)(112n)=2mn12mn(2n1)=\frac{\frac{1}{2^{n}}\left(1-\frac{1}{2^{m n}}\right)}{\left(1-\frac{1}{2^{n}}\right)}=\frac{2^{m n}-1}{2^{m n}\left(2^{n}-1\right)}