Solveeit Logo

Question

Question: The sum of the series \(\dfrac{9}{{19}} + \dfrac{{99}}{{{{19}^2}}} + \dfrac{{999}}{{{{19}^3}}} + \df...

The sum of the series 919+99192+999193+9999194+....\dfrac{9}{{19}} + \dfrac{{99}}{{{{19}^2}}} + \dfrac{{999}}{{{{19}^3}}} + \dfrac{{9999}}{{{{19}^4}}} + ....\infty is
A)1918A)\dfrac{{19}}{{18}}
B)1819B)\dfrac{{18}}{{19}}
C)718C)\dfrac{7}{{18}}
D)D) None of these

Explanation

Solution

While talking about the sum of the series, we need to know about the concept of Arithmetic and Geometric progression.

An arithmetic progression can be represented by a,(a+d),(a+2d),(a+3d),...a,(a + d),(a + 2d),(a + 3d),... where aa is the first term and dd is a common difference.
A geometric progression can be given by a,ar,ar2,....a,ar,a{r^2},.... where aa is the first term and rr is a common ratio.
Hence the given question is in the form of geometric progression.
But here in this question, there is no common difference and thus we cannot apply the AP and GP methods.
We need to solve this in general assumption, we solve step by step using the given information we will conclude the result.

Complete step-by-step solution:
Since from the given that we have, the sum of the given series is 919+99192+999193+9999194+....\dfrac{9}{{19}} + \dfrac{{99}}{{{{19}^2}}} + \dfrac{{999}}{{{{19}^3}}} + \dfrac{{9999}}{{{{19}^4}}} + ....\infty where it will go to infinity which means undetermined term.
Let us take S=919+99192+999193+9999194+....S = \dfrac{9}{{19}} + \dfrac{{99}}{{{{19}^2}}} + \dfrac{{999}}{{{{19}^3}}} + \dfrac{{9999}}{{{{19}^4}}} + ....\infty then divide 1919 into both sides we get S19=119[919+99192+999193+9999194+....]\dfrac{S}{{19}} = \dfrac{1}{{19}}[\dfrac{9}{{19}} + \dfrac{{99}}{{{{19}^2}}} + \dfrac{{999}}{{{{19}^3}}} + \dfrac{{9999}}{{{{19}^4}}} + ....\infty ]
Giving the division to each and every term, we get S19=9192+99193+999194+9999195+....\dfrac{S}{{19}} = \dfrac{9}{{{{19}^2}}} + \dfrac{{99}}{{{{19}^3}}} + \dfrac{{999}}{{{{19}^4}}} + \dfrac{{9999}}{{{{19}^5}}} + ....\infty
Now subtract the two equations, which is SS19=919+99192+999193+9999194+....[9192+99193+999194+9999195+....]S - \dfrac{S}{{19}} = \dfrac{9}{{19}} + \dfrac{{99}}{{{{19}^2}}} + \dfrac{{999}}{{{{19}^3}}} + \dfrac{{9999}}{{{{19}^4}}} + ....\infty - [\dfrac{9}{{{{19}^2}}} + \dfrac{{99}}{{{{19}^3}}} + \dfrac{{999}}{{{{19}^4}}} + \dfrac{{9999}}{{{{19}^5}}} + ....\infty ]
Combine the terms of the common value, like the same power terms, then we get SS19=919+(991929192)+(99919399193)+(9999194999194)+....S - \dfrac{S}{{19}} = \dfrac{9}{{19}} + (\dfrac{{99}}{{{{19}^2}}} - \dfrac{9}{{{{19}^2}}}) + (\dfrac{{999}}{{{{19}^3}}} - \dfrac{{99}}{{{{19}^3}}}) + (\dfrac{{9999}}{{{{19}^4}}} - \dfrac{{999}}{{{{19}^4}}}) + ....\infty
Simplifying further in the right and left side, we get 19SS19=919+(90192)+(900193)+(9000194)+....\dfrac{{19S - S}}{{19}} = \dfrac{9}{{19}} + (\dfrac{{90}}{{{{19}^2}}}) + (\dfrac{{900}}{{{{19}^3}}}) + (\dfrac{{9000}}{{{{19}^4}}}) + ....\infty
Taking the 919\dfrac{9}{{19}}common values out then we get 18S19=919[1+(1019)+(100192)+(1000193)+....]\dfrac{{18S}}{{19}} = \dfrac{9}{{19}}[1 + (\dfrac{{10}}{{19}}) + (\dfrac{{100}}{{{{19}^2}}}) + (\dfrac{{1000}}{{{{19}^3}}}) + ....\infty ] which can be writing as in the form of 18S19=919[1+(1019)+(100192)+(1000193)+....]18S19=919(111019)\dfrac{{18S}}{{19}} = \dfrac{9}{{19}}[1 + (\dfrac{{10}}{{19}}) + (\dfrac{{100}}{{{{19}^2}}}) + (\dfrac{{1000}}{{{{19}^3}}}) + ....\infty ] \Rightarrow \dfrac{{18S}}{{19}} = \dfrac{9}{{19}}(\dfrac{1}{{1 - \dfrac{{10}}{{19}}}})
Further solving we get, 18S19=919(111019)919×199=1\dfrac{{18S}}{{19}} = \dfrac{9}{{19}}(\dfrac{1}{{1 - \dfrac{{10}}{{19}}}}) \Rightarrow \dfrac{9}{{19}} \times \dfrac{{19}}{9} = 1
Hence, we get 18S19=1S=1918\dfrac{{18S}}{{19}} = 1 \Rightarrow S = \dfrac{{19}}{{18}}
Therefore, the option A)1918A)\dfrac{{19}}{{18}} is correct.

Note: Since we make of the concept of the binomial expansion, which is 1+12+(12)2+....=11121 + \dfrac{1}{2} + {(\dfrac{1}{2})^2} + ....\infty = \dfrac{1}{{1 - \dfrac{1}{2}}} and by using this we solved 919[1+(1019)+(100192)+(1000193)+....]=919(111019)\dfrac{9}{{19}}[1 + (\dfrac{{10}}{{19}}) + (\dfrac{{100}}{{{{19}^2}}}) + (\dfrac{{1000}}{{{{19}^3}}}) + ....\infty ] = \dfrac{9}{{19}}(\dfrac{1}{{1 - \dfrac{{10}}{{19}}}}) where this can be rewritten as 919[1+(1019)+(1019)2+(1019)3+....]=919(111019)\dfrac{9}{{19}}[1 + (\dfrac{{10}}{{19}}) + {(\dfrac{{10}}{{19}})^2} + {(\dfrac{{10}}{{19}})^3} + ....\infty ] = \dfrac{9}{{19}}(\dfrac{1}{{1 - \dfrac{{10}}{{19}}}})
If there is any common difference in the series, then we will use the AP, GP method to solve.