Solveeit Logo

Question

Question: The sum of the series \(\dfrac{3}{4} + \dfrac{5}{{36}} + \dfrac{7}{{144}} + .....\) up to \(11\) ter...

The sum of the series 34+536+7144+.....\dfrac{3}{4} + \dfrac{5}{{36}} + \dfrac{7}{{144}} + ..... up to 1111 terms is
A) 120121\dfrac{{120}}{{121}}
B) 143144\dfrac{{143}}{{144}}
C) 11
D) 144143\dfrac{{144}}{{143}}

Explanation

Solution

First we have to deduce the given series in the form of a sequence that it follows in order to find the nth{n^{th}} term of the series. Then, we simplify the terms to make it easier for us to add them. Then, we can find the sum of the terms with a much simpler footprint that would be easier to calculate for us and then find the sum up to the required number of terms.

Complete step by step answer:
Let the sum of the series be denoted as Sn{S_n}.
So, given, Sn=34+536+7144+.....{S_n} = \dfrac{3}{4} + \dfrac{5}{{36}} + \dfrac{7}{{144}} + .....
We can write it as,
Sn=(2.1+1)(12.22)+(2.2+1)(22.32)+(2.3+1)(32.42)+....{S_n} = \dfrac{{\left( {2.1 + 1} \right)}}{{\left( {{1^2}{{.2}^2}} \right)}} + \dfrac{{\left( {2.2 + 1} \right)}}{{\left( {{2^2}{{.3}^2}} \right)}} + \dfrac{{\left( {2.3 + 1} \right)}}{{\left( {{3^2}{{.4}^2}} \right)}} + ....
Thus, by observing the pattern of the terms of the series we can conclude that, nth{n^{th}} term, Tn=(2.n+1)[n2.(n+1)2]{T_n} = \dfrac{{\left( {2.n + 1} \right)}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}
Now, adding and subtracting n2{n^2} in the numerator, we get,
Tn=(n2+2.n+1n2)[n2.(n+1)2]\Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 2.n + 1 - {n^2}} \right)}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}
Simplifying the expression, we get,
Tn=[(n2+2.n+12)n2][n2.(n+1)2]\Rightarrow {T_n} = \dfrac{{\left[ {\left( {{n^2} + 2.n + {1^2}} \right) - {n^2}} \right]}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}
We know, (a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2}, using this algebraic identity, we get,
Tn=[(n+1)2n2][n2.(n+1)2]\Rightarrow {T_n} = \dfrac{{\left[ {{{\left( {n + 1} \right)}^2} - {n^2}} \right]}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}
Now, diving each term in the numerator by the denominator, we get,
Tn=(n+1)2n2.(n+1)2n2n2.(n+1)2\Rightarrow {T_n} = \dfrac{{{{\left( {n + 1} \right)}^2}}}{{{n^2}.{{\left( {n + 1} \right)}^2}}} - \dfrac{{{n^2}}}{{{n^2}.{{\left( {n + 1} \right)}^2}}}
Tn=1n21(n+1)2\Rightarrow {T_n} = \dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}
Now, putting n=1,2,3,4......n = 1,2,3,4......up to nn terms, we get,
T1=1121(1+1)2=112122\Rightarrow {T_1} = \dfrac{1}{{{1^2}}} - \dfrac{1}{{{{\left( {1 + 1} \right)}^2}}} = \dfrac{1}{{{1^2}}} - \dfrac{1}{{{2^2}}}
T2=1221(2+1)2=122132\Rightarrow {T_2} = \dfrac{1}{{{2^2}}} - \dfrac{1}{{{{\left( {2 + 1} \right)}^2}}} = \dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}
T3=1321(3+1)2=132142\Rightarrow {T_3} = \dfrac{1}{{{3^2}}} - \dfrac{1}{{{{\left( {3 + 1} \right)}^2}}} = \dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}}
T4=1421(4+1)2=142152\Rightarrow {T_4} = \dfrac{1}{{{4^2}}} - \dfrac{1}{{{{\left( {4 + 1} \right)}^2}}} = \dfrac{1}{{{4^2}}} - \dfrac{1}{{{5^2}}} and so on.
Hence, Tn=1n21(n+1)2{T_n} = \dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}
Now, adding all the terms up to nn terms, we get,
Sn=T1+T2+T3+......+Tn{S_n} = {T_1} + {T_2} + {T_3} + ...... + {T_n}
Sn=(112122)+(122132)+(132142)+.....+(1n21(n+1)2)\Rightarrow {S_n} = \left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{2^2}}}} \right) + \left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right) + \left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}}} \right) + ..... + \left( {\dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}} \right)
Sn=1122+122132+132142+.....+1n21(n+1)2\Rightarrow {S_n} = 1 - \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}} + ..... + \dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}
Here, we can clearly observe that, all the terms have their negative counterparts and gets cancelled, except, 11 and 1(n+1)2\dfrac{1}{{{{\left( {n + 1} \right)}^2}}}.
So, we get,
Sn=11(n+1)2\Rightarrow {S_n} = 1 - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}
As per the question, we are to find the sum up to 11th{11^{th}} term.
Therefore, S11=11(11+1)2{S_{11}} = 1 - \dfrac{1}{{{{\left( {11 + 1} \right)}^2}}}
S11=11(12)2\Rightarrow {S_{11}} = 1 - \dfrac{1}{{{{\left( {12} \right)}^2}}}
S11=11144\Rightarrow {S_{11}} = 1 - \dfrac{1}{{144}}
Simplifying the equation, we get,
S11=1441144\Rightarrow {S_{11}} = \dfrac{{144 - 1}}{{144}}
S11=143144\Rightarrow {S_{11}} = \dfrac{{143}}{{144}}
Therefore, the sum of the series up to 11th{11^{th}} term is 143144\dfrac{{143}}{{144}}.

Note: The sum of series gives us the idea where the series may converge to. Deduction of the terms gives us the idea about a particular term, where it may be in the series. The sum of series is also used to know how many terms are to be used in order to reach a particular value. We must know the methodology for solving such types of questions.