Solveeit Logo

Question

Question: The sum of the series \(\dfrac{1}{{3 \times 7}} + \dfrac{1}{{7 \times 11}} + \dfrac{1}{{11 \times 15...

The sum of the series 13×7+17×11+111×15+............\dfrac{1}{{3 \times 7}} + \dfrac{1}{{7 \times 11}} + \dfrac{1}{{11 \times 15}} + ............is
a. 13 b. 16 c. 19 d. 112  a.{\text{ }}\dfrac{1}{3} \\\ b.{\text{ }}\dfrac{1}{6} \\\ c.{\text{ }}\dfrac{1}{9} \\\ d.{\text{ }}\dfrac{1}{{12}} \\\

Explanation

Solution

Hint:First calculate the general term of the given series i.e. its nth{n^{th}} term. Using the formula an=a1+(n1)d{a_n} = {a_1} + \left( {n - 1} \right)d, where d is the common difference. In nth{n^{th}} term numerator remains the same which is 1, but the denominator will follow the property of A.P.

Complete step-by-step answer:

As we see that (3,7,11...........)\left( {3,7,11...........} \right)forms an A.P
With first term a1=3{a_1} = 3, common difference d=(73)=(117)=4d = \left( {7 - 3} \right) = \left( {11 - 7} \right) = 4, and the number of terms is nn.

Therefore the nth{n^{th}}term of the series is written as
an=a1+(n1)d an=3+(n1)4=4n1  {a_n} = {a_1} + \left( {n - 1} \right)d \\\ \Rightarrow {a_n} = 3 + \left( {n - 1} \right)4 = 4n - 1 \\\

Now as we see that (7,11,15...........)\left( {7,11,15...........} \right) forms an A.P

With first terma1=7{a_1} = 7, common difference d=(117)=(1511)=4d = \left( {11 - 7} \right) = \left( {15 - 11} \right) = 4, and the number of terms is nn.

Therefore the nth{n^{th}} term of the series is written as
an=a1+(n1)d an=7+(n1)4=4n+3  {a_n} = {a_1} + \left( {n - 1} \right)d \\\ \Rightarrow {a_n} = 7 + \left( {n - 1} \right)4 = 4n + 3 \\\

Therefore the nth{n^{th}} term of the given series is Tn=1(4n1)(4n+3){T_n} = \dfrac{1}{{\left( {4n - 1} \right)\left( {4n + 3} \right)}}
Tn=1(4n1)(4n+3)=14[14n114n+3]\Rightarrow {T_n} = \dfrac{1}{{\left( {4n - 1} \right)\left( {4n + 3} \right)}} = \dfrac{1}{4}\left[ {\dfrac{1}{{4n - 1}} - \dfrac{1}{{4n + 3}}} \right]

Now for n=1,2,3...........,(n1),nn = 1,2,3...........,\left( {n - 1} \right),n

T1=14[1317]  T2=14[17111]  T3=14[111115]  .  .  Tn1=14[14(n1)114(n1)+3]  Tn=14[14n114n+3]  \Rightarrow {T_1} = \dfrac{1}{4}\left[ {\dfrac{1}{3} - \dfrac{1}{7}} \right] \\\ {\text{ }}{T_2} = \dfrac{1}{4}\left[ {\dfrac{1}{7} - \dfrac{1}{{11}}} \right] \\\ {\text{ }}{T_3} = \dfrac{1}{4}\left[ {\dfrac{1}{{11}} - \dfrac{1}{{15}}} \right] \\\ {\text{ }}{\text{.}} \\\ {\text{ }}{\text{.}} \\\ {\text{ }}{T_{n - 1}} = \dfrac{1}{4}\left[ {\dfrac{1}{{4\left( {n - 1} \right) - 1}} - \dfrac{1}{{4\left( {n - 1} \right) + 3}}} \right] \\\ {\text{ }}{T_n} = \dfrac{1}{4}\left[ {\dfrac{1}{{4n - 1}} - \dfrac{1}{{4n + 3}}} \right] \\\

Now add all L.H.S and R.H.S respectively
T1+T2+T3+.......+Tn1+Tn=14[1317+17111+111115+............+14(n1)114(n1)+3+14n114n+3] T1+T2+T3+.......+Tn1+Tn=14[1317+17111+111115+............+14(n1)114n1+14n114n+3] r=1nTr=14[1314n+3]  \Rightarrow {T_1} + {T_2} + {T_3} + ....... + {T_{n - 1}} + {T_n} = \dfrac{1}{4}\left[ {\dfrac{1}{3} - \dfrac{1}{7} + \dfrac{1}{7} - \dfrac{1}{{11}} + \dfrac{1}{{11}} - \dfrac{1}{{15}} + ............ + \dfrac{1}{{4\left( {n - 1} \right) - 1}} - \dfrac{1}{{4\left( {n - 1} \right) + 3}} + \dfrac{1}{{4n - 1}} - \dfrac{1}{{4n + 3}}} \right] \\\ \Rightarrow {T_1} + {T_2} + {T_3} + ....... + {T_{n - 1}} + {T_n} = \dfrac{1}{4}\left[ {\dfrac{1}{3} - \dfrac{1}{7} + \dfrac{1}{7} - \dfrac{1}{{11}} + \dfrac{1}{{11}} - \dfrac{1}{{15}} + ............ + \dfrac{1}{{4\left( {n - 1} \right) - 1}} - \dfrac{1}{{4n - 1}} + \dfrac{1}{{4n - 1}} - \dfrac{1}{{4n + 3}}} \right] \\\ \Rightarrow \sum\limits_{r = 1}^n {{T_r} = } \dfrac{1}{4}\left[ {\dfrac{1}{3} - \dfrac{1}{{4n + 3}}} \right] \\\

Now, if the series tends to infinite i.e., n=n = \infty
r=1nTr=14[1314n+3]=14[131+3]=14[131]\Rightarrow \sum\limits_{r = 1}^n {{T_r} = } \dfrac{1}{4}\left[ {\dfrac{1}{3} - \dfrac{1}{{4n + 3}}} \right] = \dfrac{1}{4}\left[ {\dfrac{1}{3} - \dfrac{1}{{\infty + 3}}} \right] = \dfrac{1}{4}\left[ {\dfrac{1}{3} - \dfrac{1}{\infty }} \right]

As we know 1=0\dfrac{1}{\infty } = 0
r=1nTr=14[1314n+3]=14[131]=14[130]=112\Rightarrow \sum\limits_{r = 1}^n {{T_r} = } \dfrac{1}{4}\left[ {\dfrac{1}{3} - \dfrac{1}{{4n + 3}}} \right] = \dfrac{1}{4}\left[ {\dfrac{1}{3} - \dfrac{1}{\infty }} \right] = \dfrac{1}{4}\left[ {\dfrac{1}{3} - 0} \right] = \dfrac{1}{{12}}

So, this is the required sum of the given series.

Hence, option (d) is correct.

Note: In such types of questions the key concept we have to remember is that first always find out its nth{n^{th}} term, using some basic properties of A.P which is stated above, then calculate its term for n=1,2,3...........,(n1),nn = 1,2,3...........,\left( {n - 1} \right),n, then add all the L.H.S and R.H.S respectively, we will get the required sum of the given series, then substitute n equals to infinity, we will get the required answer.