Solveeit Logo

Question

Question: The sum of the series \( ^4{C_0}{ + ^5}{C_1}x{ + ^6}{C_2}{x^2}{ + ^7}{C_3}{x^3} + \cdots \,{\text{to...

The sum of the series 4C0+5C1x+6C2x2+7C3x3+to^4{C_0}{ + ^5}{C_1}x{ + ^6}{C_2}{x^2}{ + ^7}{C_3}{x^3} + \cdots \,{\text{to}}\,\infty is
A. (1x)4{\left( {1 - x} \right)^{ - 4}}
B. 1(1x)5\dfrac{1}{{{{\left( {1 - x} \right)}^5}}}
C. (1+x)5{\left( {1 + x} \right)^{ - 5}}
D.None of these

Explanation

Solution

Hint : To solve this question first we should know that (1x)n{\left( {1 - x} \right)^{ - n}} expansion is n1C0+nC1x+n+1C2x2+n+2C3x3+^{n - 1}{C_0}{ + ^n}{C_1}x{ + ^{n + 1}}{C_2}{x^2}{ + ^{n + 2}}{C_3}{x^3} + \cdots
comparing the coefficients of the terms of the standard series with that given in question we solve the given problem.

Complete step-by-step answer :
Given, series is 4C0+5C1x+6C2x2+7C3x3+to^4{C_0}{ + ^5}{C_1}x{ + ^6}{C_2}{x^2}{ + ^7}{C_3}{x^3} + \cdots \,{\text{to}}\,\infty .
As, we know the expansion of the (1x)n{\left( {1 - x} \right)^{ - n}} is given by n1C0+nC1x+n+1C2x2+n+2C3x3+^{n - 1}{C_0}{ + ^n}{C_1}x{ + ^{n + 1}}{C_2}{x^2}{ + ^{n + 2}}{C_3}{x^3} + \cdots .
If we compare equation 4C0+5C1x+6C2x2+7C3x3+to^4{C_0}{ + ^5}{C_1}x{ + ^6}{C_2}{x^2}{ + ^7}{C_3}{x^3} + \cdots \,{\text{to}}\,\infty and n1C0+nC1x+n+1C2x2+n+2C3x3+^{n - 1}{C_0}{ + ^n}{C_1}x{ + ^{n + 1}}{C_2}{x^2}{ + ^{n + 2}}{C_3}{x^3} + \cdots .
Then, n1=4n=4+1=5n - 1 = 4 \Rightarrow n = 4 + 1 = 5
Therefore, n will be equal to 5.
So, by this we can conclude that 4C0+5C1x+6C2x2+7C3x3+to^4{C_0}{ + ^5}{C_1}x{ + ^6}{C_2}{x^2}{ + ^7}{C_3}{x^3} + \cdots \,{\text{to}}\,\infty sums up as (1x)4{\left( {1 - x} \right)^{ - 4}} .
So, the correct answer is “(1x)4{\left( {1 - x} \right)^{ - 4}} ”.

Note : The Binomial Theorem is the process of extending an expression to some finite power that has been elevated. A binomial theorem is a strong expansion instrument that has Algebra application, likelihood, etc.