Solveeit Logo

Question

Question: The sum of the series $2 \times 1 \times {}^{20}C_4 - 3 \times 2 \times {}^{20}C_5 + 4 \times 3 \tim...

The sum of the series 2×1×20C43×2×20C5+4×3×20C65×4×20C7+...+18×17×20C202 \times 1 \times {}^{20}C_4 - 3 \times 2 \times {}^{20}C_5 + 4 \times 3 \times {}^{20}C_6 - 5 \times 4 \times {}^{20}C_7 + ... + 18 \times 17 \times {}^{20}C_{20}, is equal to

Answer

34

Explanation

Solution

Let S=2×1×20C43×2×20C5+4×3×20C65×4×20C7++18×17×20C20S = 2 \times 1 \times {}^{20}C_4 - 3 \times 2 \times {}^{20}C_5 + 4 \times 3 \times {}^{20}C_6 - 5 \times 4 \times {}^{20}C_7 + \dots + 18 \times 17 \times {}^{20}C_{20}.

We can write the general term of the series as Tn=(1)n4(n2)(n3)20CnT_n = (-1)^{n-4} (n-2)(n-3) {}^{20}C_n, where nn ranges from 44 to 2020. So, S=n=420(1)n4(n2)(n3)20CnS = \sum_{n=4}^{20} (-1)^{n-4} (n-2)(n-3) {}^{20}C_n.

Consider the expansion of (1x)20(1-x)^{20}: (1x)20=k=020(1)k20Ckxk(1-x)^{20} = \sum_{k=0}^{20} (-1)^k {}^{20}C_k x^k.

Differentiate twice with respect to xx: First derivative: ddx(1x)20=20(1x)19=k=120(1)kk20Ckxk1\frac{d}{dx} (1-x)^{20} = -20(1-x)^{19} = \sum_{k=1}^{20} (-1)^k k {}^{20}C_k x^{k-1}.

Second derivative: d2dx2(1x)20=20(19)(1x)18=20×19(1x)18\frac{d^2}{dx^2} (1-x)^{20} = -20(-19)(1-x)^{18} = 20 \times 19 (1-x)^{18}. On the right side: k=220(1)kk(k1)20Ckxk2\sum_{k=2}^{20} (-1)^k k(k-1) {}^{20}C_k x^{k-2}.

So, 20×19(1x)18=k=220(1)kk(k1)20Ckxk220 \times 19 (1-x)^{18} = \sum_{k=2}^{20} (-1)^k k(k-1) {}^{20}C_k x^{k-2}.

Let j=k2j = k-2. Then k=j+2k = j+2. When k=2k=2, j=0j=0. When k=20k=20, j=18j=18. 20×19(1x)18=j=018(1)j+2(j+2)(j+1)20Cj+2xj20 \times 19 (1-x)^{18} = \sum_{j=0}^{18} (-1)^{j+2} (j+2)(j+1) {}^{20}C_{j+2} x^j. Since (1)j+2=(1)j(-1)^{j+2} = (-1)^j, we have: 20×19(1x)18=j=018(1)j(j+2)(j+1)20Cj+2xj20 \times 19 (1-x)^{18} = \sum_{j=0}^{18} (-1)^j (j+2)(j+1) {}^{20}C_{j+2} x^j.

Let's use the identity k(k1)NCk=N(N1)N2Ck2k(k-1) {}^{N}C_k = N(N-1) {}^{N-2}C_{k-2}. Consider the sum S=n=420(1)n4(n2)(n3)20CnS = \sum_{n=4}^{20} (-1)^{n-4} (n-2)(n-3) {}^{20}C_n. Let j=n4j=n-4. Then n=j+4n=j+4. S=j=016(1)j(j+2)(j+1)20Cj+4S = \sum_{j=0}^{16} (-1)^j (j+2)(j+1) {}^{20}C_{j+4}.

Let's use the general form: k=rn(1)krf(k)NCk\sum_{k=r}^n (-1)^{k-r} f(k) {}^{N}C_k. Consider the identity k=rN(1)kNCkP(k)=0\sum_{k=r}^N (-1)^k {}^{N}C_k P(k) = 0 if P(k)P(k) is a polynomial of degree less than NrN-r. This is not directly applicable.

Let's recall the identity: k=0n(1)knCk=0\sum_{k=0}^{n} (-1)^k {}^{n}C_k = 0 for n1n \ge 1. k=0n(1)kknCk=0\sum_{k=0}^{n} (-1)^k k {}^{n}C_k = 0 for n2n \ge 2. k=0n(1)kk(k1)nCk=0\sum_{k=0}^{n} (-1)^k k(k-1) {}^{n}C_k = 0 for n3n \ge 3. In general, k=0n(1)kk(k1)(km+1)nCk=0\sum_{k=0}^{n} (-1)^k k(k-1)\dots(k-m+1) {}^{n}C_k = 0 for nm+1n \ge m+1.

Let's consider the sum S=n=420(1)n4(n2)(n3)20CnS = \sum_{n=4}^{20} (-1)^{n-4} (n-2)(n-3) {}^{20}C_n. Let k=n4k=n-4. Then the sum becomes S=k=016(1)k(k+2)(k+1)20Ck+4S = \sum_{k=0}^{16} (-1)^k (k+2)(k+1) {}^{20}C_{k+4}.

Let's use the property: k(k1)(km+1)NCk=N(N1)(Nm+1)NmCkmk(k-1) \dots (k-m+1) {}^{N}C_k = N(N-1) \dots (N-m+1) {}^{N-m}C_{k-m}. We have (n2)(n3)20Cn(n-2)(n-3) {}^{20}C_n.

Now, let's consider the sum Sfull=n=020(1)n(n2)(n3)20CnS_{full} = \sum_{n=0}^{20} (-1)^n (n-2)(n-3) {}^{20}C_n. Sfull=n=020(1)n[n(n1)4n+6]20CnS_{full} = \sum_{n=0}^{20} (-1)^n [n(n-1) - 4n + 6] {}^{20}C_n. Sfull=n=020(1)nn(n1)20Cn4n=020(1)nn20Cn+6n=020(1)n20CnS_{full} = \sum_{n=0}^{20} (-1)^n n(n-1) {}^{20}C_n - 4 \sum_{n=0}^{20} (-1)^n n {}^{20}C_n + 6 \sum_{n=0}^{20} (-1)^n {}^{20}C_n.

For N=20N=20:

  1. n=020(1)n20Cn=0\sum_{n=0}^{20} (-1)^n {}^{20}C_n = 0 (since 20120 \ge 1).
  2. n=020(1)nn20Cn=0\sum_{n=0}^{20} (-1)^n n {}^{20}C_n = 0 (since 20220 \ge 2).
  3. n=020(1)nn(n1)20Cn=0\sum_{n=0}^{20} (-1)^n n(n-1) {}^{20}C_n = 0 (since 20320 \ge 3).

Therefore, Sfull=04(0)+6(0)=0S_{full} = 0 - 4(0) + 6(0) = 0.

Now, let's relate SfullS_{full} to the given series SS. The given series is S=n=420(1)n4(n2)(n3)20CnS = \sum_{n=4}^{20} (-1)^{n-4} (n-2)(n-3) {}^{20}C_n.

For n=0,1,2,3n=0,1,2,3, the terms in SfullS_{full} are: For n=0n=0: (1)0(02)(03)20C0=1×6×1=6(-1)^0 (0-2)(0-3) {}^{20}C_0 = 1 \times 6 \times 1 = 6. For n=1n=1: (1)1(12)(13)20C1=1×(1)×(2)×20=40(-1)^1 (1-2)(1-3) {^{20}C_1} = -1 \times (-1) \times (-2) \times 20 = -40. For n=2n=2: (1)2(22)(23)20C2=1×0×(1)×20C2=0(-1)^2 (2-2)(2-3) {^{20}C_2} = 1 \times 0 \times (-1) \times {^{20}C_2} = 0. For n=3n=3: (1)3(32)(33)20C3=1×1×0×20C3=0(-1)^3 (3-2)(3-3) {^{20}C_3} = -1 \times 1 \times 0 \times {^{20}C_3} = 0.

So, Sfull=640+0+0+n=420(1)n(n2)(n3)20Cn=0S_{full} = 6 - 40 + 0 + 0 + \sum_{n=4}^{20} (-1)^n (n-2)(n-3) {}^{20}C_n = 0. 34+n=420(1)n(n2)(n3)20Cn=0-34 + \sum_{n=4}^{20} (-1)^n (n-2)(n-3) {}^{20}C_n = 0. So, n=420(1)n(n2)(n3)20Cn=34\sum_{n=4}^{20} (-1)^n (n-2)(n-3) {}^{20}C_n = 34.

Our given series is S=n=420(1)n4(n2)(n3)20CnS = \sum_{n=4}^{20} (-1)^{n-4} (n-2)(n-3) {}^{20}C_n. The signs in SS are (1)n4(-1)^{n-4}. The signs in the sum we just calculated are (1)n(-1)^n. Since (1)n4=(1)n(1)4=(1)n×1=(1)n(-1)^{n-4} = (-1)^n (-1)^{-4} = (-1)^n \times 1 = (-1)^n. So, the signs are the same for n4n \ge 4.

Therefore, S=n=420(1)n(n2)(n3)20Cn=34S = \sum_{n=4}^{20} (-1)^n (n-2)(n-3) {}^{20}C_n = 34.