Solveeit Logo

Question

Question: The sum of the series \(2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cd...

The sum of the series 220C0+520C1+820C2+1120C3++6220C202{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}} is equal to:
(a) 224{{2}^{24}}
(b) 225{{2}^{25}}
(c) 226{{2}^{26}}
(d) 223{{2}^{23}}

Explanation

Solution

We will first rearrange the series 220C0+520C1+820C2+1120C3++6220C202{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}} into a similar expression and then we will try to find its sum with the original series. Then after using the formula 0knnCk=2n\sum\limits_{0\le k\le n}{{}^{n}{{C}_{k}}}={{2}^{n}} of the sum of the nth row, we will try to find the sum of the series.

Complete step-by-step solution:
We know from the properties of combinations that nCr=nCnr{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}
Then, for the terms given in the expression mentioned in the question,
20C0=20C200=20C20 20C1=20C201=20C19 20C2=20C202=20C18 20C3=20C203=20C17 \begin{aligned} &\Rightarrow {}^{20}{{C}_{0}}={}^{20}{{C}_{20-0}}={}^{20}{{C}_{20}} \\\ &\Rightarrow {}^{20}{{C}_{1}}={}^{20}{{C}_{20-1}}={}^{20}{{C}_{19}} \\\ &\Rightarrow {}^{20}{{C}_{2}}={}^{20}{{C}_{20-2}}={}^{20}{{C}_{18}} \\\ &\Rightarrow {}^{20}{{C}_{3}}={}^{20}{{C}_{20-3}}={}^{20}{{C}_{17}} \\\ \end{aligned}
And so on...
We should also recall that 0knnCk=2n\sum\limits_{0\le k\le n}{{}^{n}{{C}_{k}}}={{2}^{n}}
nC1+nC2+nC3+nC4++nCn=2n (i)\Rightarrow {}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}+\cdots +{}^{n}{{C}_{n}}={{2}^{n}}\text{ }\cdots \left( i \right)
Let us write the sum as S=220C0+520C1+820C2+1120C3++6220C20S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}}
Then it can also be written as S=220C20+520C19+820C18+1120C17++6220C0S=2{}^{20}{{C}_{20}}+5{}^{20}{{C}_{19}}+8{}^{20}{{C}_{18}}+11{}^{20}{{C}_{17}}+\cdots +62{}^{20}{{C}_{0}}
This can also be arranged as S=6220C20+5920C19++220C0S=62{}^{20}{{C}_{20}}+59{}^{20}{{C}_{19}}+\cdots +2{}^{20}{{C}_{0}}
Two rearrangements of S can be found as
S=220C0+520C1+820C2+1120C3++6220C20 S=6220C20+5920C19++220C0 \begin{aligned} & S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}} \\\ & S=62{}^{20}{{C}_{20}}+59{}^{20}{{C}_{19}}+\cdots +2{}^{20}{{C}_{0}} \\\ \end{aligned}
Adding them, we get
S+S=(2+62)20C20+(5+59)20C19++(2+62)20C0 2S=6420C20+6420C19++6420C0 =64(20C20+20C19++20C0)\begin{aligned} &\Rightarrow S+S=\left( 2+62 \right){}^{20}{{C}_{20}}+\left( 5+59 \right){}^{20}{{C}_{19}}+\cdots +\left( 2+62 \right){}^{20}{{C}_{0}} \\\ &\Rightarrow 2S=64{}^{20}{{C}_{20}}+64{}^{20}{{C}_{19}}+\cdots +64{}^{20}{{C}_{0}} \\\ & =64\left( {}^{20}{{C}_{20}}+{}^{20}{{C}_{19}}+\cdots +{}^{20}{{C}_{0}} \right) \end{aligned}
Putting the value of equation (i) in above equation, we get
2S=64(20C20+20C19++20C0) 2S=64×220 S=32×220 =25×220=225\begin{aligned} &\Rightarrow 2S=64\left( {}^{20}{{C}_{20}}+{}^{20}{{C}_{19}}+\cdots+{}^{20}{{C}_{0}} \right) \\\ &\Rightarrow 2S=64\times {{2}^{20}} \\\ &\Rightarrow S=32\times {{2}^{20}} \\\ & ={{2}^{5}}\times {{2}^{20}}={{2}^{25}} \end{aligned}
Hence, option (c) is correct.

Note: Let us recall the definition of factorial notation and combinations.
The factorial notation is denoted by n!n! or !n\left| \\!{\underline {\, n \,}} \right. and is defined as the product of first n natural numbers, that is, n!=1×2×3××nn!=1\times 2\times 3\times \cdots \times n
The number of combinations of n different objects taken r at a time, is denoted by nCr{}^{n}{{C}_{r}} and is defined by nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}
Another way to solve this question is,
Given S=220C0+520C1+820C2+1120C3++6220C20S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}}
Clearly, 2,5,8,... follows the pattern of 3r+2 where r=0, 1, 2, ...
Thus, the given series can be written as
S=220C0+520C1+820C2+1120C3++6220C20S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}}
Putting 3r+23r+2 in the above expression, we get
S=r=020(3r+2)20CrS=\sum\limits_{r=0}^{20}{\left( 3r+2 \right)}{}^{20}{{C}_{r}}
Solving it further, we get
S=r=0203r(20Cr)+r=0202(20Cr) =3r=020r(20Cr)+2r=020(20Cr)\begin{aligned} & S=\sum\limits_{r=0}^{20}{3r\left( {}^{20}{{C}_{r}} \right)}+\sum\limits_{r=0}^{20}{2\left( {}^{20}{{C}_{r}} \right)} \\\ & =3\sum\limits_{r=0}^{20}{r\left( {}^{20}{{C}_{r}} \right)}+2\sum\limits_{r=0}^{20}{\left( {}^{20}{{C}_{r}} \right)} \end{aligned}
We know, nCr=nrn1Cr1{}^{n}{{C}_{r}}=\dfrac{n}{r}{}^{n-1}{{C}_{r-1}}
Putting this value in above expression, we get
S=3r=020r(20r)(19Cr1)+2r=020(20Cr)S=3\sum\limits_{r=0}^{20}{r\left( \dfrac{20}{r} \right)\left( {}^{19}{{C}_{r-1}} \right)}+2\sum\limits_{r=0}^{20}{\left( {}^{20}{{C}_{r}} \right)}
Solving it further, we get
S=3×20r=020(19Cr1)+2r=020(20Cr) =60×219+2×220 =(60+4)×219=64×219=26×219=225\begin{aligned} & S=3\times 20\sum\limits_{r=0}^{20}{\left( {}^{19}{{C}_{r-1}} \right)}+2\sum\limits_{r=0}^{20}{\left( {}^{20}{{C}_{r}} \right)} \\\ & =60\times {{2}^{19}}+2\times {{2}^{20}} \\\ & =\left( 60+4 \right)\times {{2}^{19}}=64\times {{2}^{19}}={{2}^{6}}\times {{2}^{19}}={{2}^{25}} \end{aligned}
Hence, the sum of the series is 225{{2}^{25}}.