Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

The sum of the series 1+142!+1164!+1646!+1+\frac{1}{4\cdot2!}+\frac{1}{16\cdot 4!}+\frac{1}{64\cdot 6!} + \ldots \infty is :

A

e+12e\frac{e+1}{2\sqrt{e}}

B

12e\frac{1}{2\sqrt{e}}

C

e1e\frac{e-1}{\sqrt{e}}

D

e12e\frac{e-1}{2\sqrt{e}}

Answer

e+12e\frac{e+1}{2\sqrt{e}}

Explanation

Solution

We know that ex=1+x+x22!+x33!+x44!+e^{x} = 1+x+ \frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots ex=1x+x22!+x33!+x44!e^{-x} = 1-x+ \frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\ldots ex+ex2=1+x22!+x44!+x66!+\Rightarrow \frac{e^{x}+e^{-x}}{2} = 1+ \frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots Putx=12\quad x = \frac{1}{2} e1/2+e1/22=1+(12)212!+(12)414!+\frac{e^{1/2}+e^{-1/2}}{2} = 1+ \left(\frac{1}{2}\right)^{2}\frac{1}{2!}+\left(\frac{1}{2}\right)^{4}\frac{1}{4!}+\ldots e+12e=1+(12)212!+(12)414!+\Rightarrow\quad\frac{e+1}{2\sqrt{e}} = 1+ \left(\frac{1}{2}\right)^{2}\frac{1}{2!}+\left(\frac{1}{2}\right)^{4}\frac{1}{4!}+\ldots