Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

The sum of the perimeter of a circle and square is kk, where kk is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.

Answer

Let rr be the radius of the circle and aa be the side of the square.
Then, we have:
2πr+4a=k2πr+4a=k(where kk is constant)
a=k2πr4⇒a=\frac{k-2πr}{4}
The sum of the areas of the circle and the square (A)(A) is given by,
A=πr2+a2=πr2+(k2πr)216A=πr^2+a^2=πr^2+\frac{(k-2πr)^2}{16}
dAdr=2πr+2(k2πr)(2π)16=2πrπ(k2πr)4∴\frac{dA}{dr}=2πr+\frac{2(k-2πr)(-2π)}{16}=2πr-\frac{π(k-2πr)}{4}
Now,dAdr=0\frac{dA}{dr}=0
2πr=π(k2πr)4⇒2πr=\frac{π(k-2πr)}{4}
8r=k2πr8r=k-2πr
(8+2π)r=k⇒(8+2π)r=k
r=k8+2π=k2(4+π)⇒r=\frac{k}{8+2π}=\frac{k}{2(4+π)}
Now,d2Adr2=2π+π22>0\frac{d^2A}{dr^2}=2π+\frac{π^2}{2}>0
∴When r=k2(4π),d2Adr2>0r=\frac{k}{2(4π)},\frac{d^2A}{dr^2}>0
∴ The sum of the areas is least when r=k2(4π).r=\frac{k}{2(4π)}.
When r=k2(4π),a=k2π[k2(4π)]4r=\frac{k}{2(4π)},a=\frac{k-2π[\frac{k}{2(4π)}]}{4}
=k(4π)πk44(π)4=4k4(π)4=kπ=2r=\frac{k(4π)\,π\,\,k}{4\, 4(π)\,4}=\frac{4k}{4(π)4}=\frac{k}{π}=2r
Hence, it has been proved that the sum of their areas is least when the side of the square is double the radius of the circle.