Solveeit Logo

Question

Question: The sum of the numbers \[1 + 2 \cdot 2 + 3 \cdot {2^2} + 4 \cdot {2^3} + ..... + 50 \cdot {2^{49}}\]...

The sum of the numbers 1+22+322+423+.....+502491 + 2 \cdot 2 + 3 \cdot {2^2} + 4 \cdot {2^3} + ..... + 50 \cdot {2^{49}} is
(1) 1+492491 + 49 \cdot {2^{49}}
(2) 1+492501 + 49 \cdot {2^{50}}
(3) 1+502491 + 50 \cdot {2^{49}}
(4) 1+502501 + 50 \cdot {2^{50}}

Explanation

Solution

To solve this problem, we let the given sum of numbers as SS and named is as equation (i)\left( i \right) then we multiply the equation (i)\left( i \right) by 22 and named it as equation (ii)\left( {ii} \right) and we write it under equation (i)\left( i \right) in such a way that the right side of the equation (ii)\left( {ii} \right) starts under the second term of the equation (i)\left( i \right) Then subtract both the equations. After some simplification, we get a G.P and we will apply the formula of sum of n terms of G.P. and do the calculation and find the desired result.
Formula used:
Sn=a(rn1r1){S_n} = a\left( {\dfrac{{{r^n} - 1}}{{r - 1}}} \right)
where, a is the first term, r is the common ratio and n is the number of terms.

Complete answer: Let,
S=1+22+322+423+524+.....+50249 (i)S = 1 + 2 \cdot 2 + 3 \cdot {2^2} + 4 \cdot {2^3} + 5 \cdot {2^4} + ..... + 50 \cdot {2^{49}}{\text{ }} - - - \left( i \right)
Multiply above equation by 22 we get
2S= 12+222+323+424+......+49249+50250 (ii)2S = {\text{ }}1 \cdot 2 + 2 \cdot {2^2} + 3 \cdot {2^3} + 4 \cdot {2^4} + ...... + 49 \cdot {2^{49}} + 50 \cdot {2^{50}}{\text{ }} - - - \left( {ii} \right)
Now, subtract (ii)\left( {ii} \right) from (i)\left( i \right)
S=1+12+122+123+124+....+124950250- S = 1 + 1 \cdot 2 + 1 \cdot {2^2} + 1 \cdot {2^3} + 1 \cdot {2^4} + .... + 1 \cdot {2^{49}} - 50 \cdot {2^{50}}
S=1+(2+22+23+24+....+249)50250 (iii)\Rightarrow - S = 1 + \left( {2 + {2^2} + {2^3} + {2^4} + .... + {2^{49}}} \right) - 50 \cdot {2^{50}}{\text{ }} - - - \left( {iii} \right)
Now, the terms that are under bracket forms a G.P. So, we will apply the formula of sum of n terms of G.P.
i.e., Sn=a(rn1r1){S_n} = a\left( {\dfrac{{{r^n} - 1}}{{r - 1}}} \right)
Here, a=2, n=49, r=2a = 2,{\text{ }}n = 49,{\text{ }}r = 2
S49=2(249121)\therefore {S_{49}} = 2\left( {\dfrac{{{2^{49}} - 1}}{{2 - 1}}} \right)
S49=2(2491)\Rightarrow {S_{49}} = 2\left( {{2^{49}} - 1} \right)
Substitute the value of S49{S_{49}} in equation (iii)\left( {iii} \right)
S=1+2(2491)50250\Rightarrow - S = 1 + 2\left( {{2^{49}} - 1} \right) - 50 \cdot {2^{50}}
S=1+(2502)50250\Rightarrow - S = 1 + ({2^{50}} - 2) - 50 \cdot {2^{50}}
On simplification, we get
S=149250\Rightarrow - S = - 1 - 49 \cdot {2^{50}}
S=1+49250\Rightarrow S = 1 + 49 \cdot {2^{50}}
Hence, the sum of the numbers 1+22+322+423+.....+502491 + 2 \cdot 2 + 3 \cdot {2^2} + 4 \cdot {2^3} + ..... + 50 \cdot {2^{49}} is 1+492501 + 49 \cdot {2^{50}}
Hence, option (2)\left( 2 \right) is correct.

Note:
This type of series is known as Arithmetic geometric series (A.G.S). Its nth{{\text{n}}^{{\text{th}}}} can be written as Tn=n(2n1){T_n} = n\left( {{2^n} - 1} \right) with n{\text{n}} terms as A.P. and (2n1)\left( {{2^n} - 1} \right) terms as G.P. In this question series represents A.G.S with A.P as 1,2,3,...501,2,3,...50 and G.P. as 2,22,23,...,2492,{2^2},{2^3},...,{2^{49}} . Also, while solving these types of questions the idea of the correct answer can be gained by looking at the options. Like in this question if we observe there is a pattern in the series. i.e.,
S(1)=1S\left( 1 \right) = 1
S(2)=1+22=1+22S\left( 2 \right) = 1 + 2 \cdot 2 = 1 + {2^2}
S(3)=1+22+3.22=1+4+12=17=1+223S\left( 3 \right) = 1 + 2 \cdot 2 + {3.2^2} = 1 + 4 + 12 = 17 = 1 + 2 \cdot {2^3}
and so on
So, S(n)=1+(n1)2nS\left( n \right) = 1 + \left( {n - 1} \right){2^n}
S(50)=1+(501)250=1+49250\therefore S\left( {50} \right) = 1 + \left( {50 - 1} \right){2^{50}} = 1 + 49 \cdot {2^{50}} which is the correct answer.
Hence, option (2)\left( 2 \right) will be correct.