Solveeit Logo

Question

Question: The sum of the \(n\) terms of the following series \({1^3} + {3^3} + {5^3} + {7^3} + ....\) is: 1)...

The sum of the nn terms of the following series 13+33+53+73+....{1^3} + {3^3} + {5^3} + {7^3} + .... is:

  1. n2(2n21){n^2}\left( {2{n^2} - 1} \right)
  2. n3(n1){n^3}\left( {n - 1} \right)
  3. n3+8n+4{n^3} + 8n + 4
  4. 2n4+3n22{n^4} + 3{n^2}
Explanation

Solution

Hint: We will first use the formula of sum of nn terms of 13+23+33+43+....n3=n2(n+1)24{1^3} + {2^3} + {3^3} + {4^3} + ....{n^3} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}. Find the sum of 13+23+33+43+....(2n)3{1^3} + {2^3} + {3^3} + {4^3} + ....{\left( {2n} \right)^3} and subtract the sum 23+43+63+83+....(2n)3{2^3} + {4^3} + {6^3} + {8^3} + ....{\left( {2n} \right)^3} to find the required answer.

Complete step by step answer:
We know a formula involving cube, that is the formula of the sum of cube of nn terms which is, 13+23+33+43+....n3=n2(n+1)24{1^3} + {2^3} + {3^3} + {4^3} + ....{n^3} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}.
Now, in the above formula, we have both odd and even terms. We need to subtract the sum of even terms from the known formula to get the desired answer.
Hence, we will first calculate the sum of cube of even terms.
23+43+63+83+....(2n)3{2^3} + {4^3} + {6^3} + {8^3} + ....{\left( {2n} \right)^3}
After taking, 23{2^3} common from the above series, we get,
23(13+23+33+43+....n3){2^3}\left( {{1^3} + {2^3} + {3^3} + {4^3} + ....{n^3}} \right)
We can solve the above expression using the formula, 13+23+33+43+....n3=n2(n+1)24{1^3} + {2^3} + {3^3} + {4^3} + ....{n^3} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}
Hence, the sum of 23+43+63+83+....(2n)3{2^3} + {4^3} + {6^3} + {8^3} + ....{\left( {2n} \right)^3} is 23(n2(n+1)24)=2n2(n+1)2{2^3}\left( {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right) = 2{n^2}{\left( {n + 1} \right)^2}.
Also, sum of 13+23+33+43+...(2n)3{1^3} + {2^3} + {3^3} + {4^3} + ...{\left( {2n} \right)^3} is (2n)2(2n+1)24=n2(2n+1)2\dfrac{{{{\left( {2n} \right)}^2}{{\left( {2n + 1} \right)}^2}}}{4} = {n^2}{\left( {2n + 1} \right)^2}, where 2n2n is the total number of terms.
To find the sum of cube of odd numbers, the subtract the sum of even terms from 13+23+33+43+...(2n)3{1^3} + {2^3} + {3^3} + {4^3} + ...{\left( {2n} \right)^3}.
13+23+33+43+....(2n)3(23+43+63+83+....(2n)3)=13+33+53+73+....n3{1^3} + {2^3} + {3^3} + {4^3} + ....{\left( {2n} \right)^3} - \left( {{2^3} + {4^3} + {6^3} + {8^3} + ....{{\left( {2n} \right)}^3}} \right) = {1^3} + {3^3} + {5^3} + {7^3} + ....{n^3}
On substituting the values, 13+23+33+43+....(2n)3=n2(2n+1)2{1^3} + {2^3} + {3^3} + {4^3} + ....{\left( {2n} \right)^3} = {n^2}{\left( {2n + 1} \right)^2} and 23+43+63+83+....=2n2(n+1)2{2^3} + {4^3} + {6^3} + {8^3} + .... = 2{n^2}{\left( {n + 1} \right)^2}, we get,
13+33+53+73+....=n2(2n+1)22n2(n+1)2 13+33+53+73+....=(4n4+4n3+n2)2(n4+2n3+n2) 13+33+53+73+....=n2(2n21)  {1^3} + {3^3} + {5^3} + {7^3} + .... = {n^2}{\left( {2n + 1} \right)^2} - 2{n^2}{\left( {n + 1} \right)^2} \\\ {1^3} + {3^3} + {5^3} + {7^3} + .... = \left( {4{n^4} + 4{n^3} + {n^2}} \right) - 2\left( {{n^4} + 2{n^3} + {n^2}} \right) \\\ {1^3} + {3^3} + {5^3} + {7^3} + .... = {n^2}\left( {2{n^2} - 1} \right) \\\
Therefore, the sum of 13+33+53+73+....=n2(2n21){1^3} + {3^3} + {5^3} + {7^3} + .... = {n^2}\left( {2{n^2} - 1} \right)
Hence, option A is the correct answer.

Note:- We find the sum of cubes of 2n2n number, as after subtracting half of the terms, we will be left with nn terms, as required in the question. It is known that the sum of cubes of first nn natural numbers is 13+23+33+43+....n3=n2(n+1)24{1^3} + {2^3} + {3^3} + {4^3} + ....{n^3} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}.