Solveeit Logo

Question

Question: The sum of the intercepts on the coordinate axes of the plane passing through the point \(\left( { -...

The sum of the intercepts on the coordinate axes of the plane passing through the point (2,2,2)\left( { - 2, - 2,2} \right) and containing the line joining the points (1,1,2)\left( {1, - 1,2} \right) and (1,1,1)\left( {1,1,1} \right) is?
A) 1212
B) 8 - 8
C) 4 - 4
D) 44

Explanation

Solution

In these types of question, firstly we have to convert the equation of plane into standard equation of a plane in intercept form, i.e., xa+yb+zc=1\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1, where a,b,ca,b,c are the intercepts along x, y and z-axis and then find the sum of intercepts, i.e., a+b+ca + b + c. The Cartesian equation of a plane passing through the point (x0,y0,z0)\left( {{x_0},{y_0},{z_0}} \right) is given as, a(xx0)+b(yy0)+c(zz0)a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right). Using this formula we will find the values of a,b and c. Later we will substitute the values of a, b and c in the equation to find the intercepts. Sum of all the intercepts will give us the final answer.

Complete step-by-step answer:
We know that the Cartesian equation of a plane passing through the point (x0,y0,z0)\left( {{x_0},{y_0},{z_0}} \right) is given as, a(xx0)+b(yy0)+c(zz0)a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right).
So, the equation of a plane passing through given points (2,2,2)\left( { - 2, - 2,2} \right)will be a(x+2)+b(y+2)+c(z2)=0a\left( {x + 2} \right) + b\left( {y + 2} \right) + c\left( {z - 2} \right) = 0 ….. (1)
This equation containing the line joining the points (1,1,2)\left( {1, - 1,2} \right) and (1,1,1)\left( {1,1,1} \right). So, these points will satisfies the equation.
Now put x=1,y=1,z=2x = 1,y = - 1,z = 2 in the equation of plane (1),
a(1+2)+b(1+2)+c(22)=0a\left( {1 + 2} \right) + b\left( { - 1 + 2} \right) + c\left( {2 - 2} \right) = 0
3a+b=0\Rightarrow 3a + b = 0
3a=b\Rightarrow 3a = - b
a1=b3\Rightarrow \dfrac{a}{{ - 1}} = \dfrac{b}{3} ….. (2)
Similarly, put x=1,y=1,z=1x = 1,y = 1,z = 1 in the equation of plane (2),
a(1+2)+b(1+2)+c(12)=0a\left( {1 + 2} \right) + b\left( {1 + 2} \right) + c\left( {1 - 2} \right) = 0
3a+3bc=0\Rightarrow 3a + 3b - c = 0
b+3bc=0\Rightarrow - b + 3b - c = 0 [3a=b]\left[ {\because 3a = - b} \right]
2b=c\Rightarrow 2b = c
b1=c2\Rightarrow \dfrac{b}{1} = \dfrac{c}{2}
Divide both sides by 33 to find the value of b3\dfrac{b}{3} , so we can equate (1) and (2).
b3=c6\Rightarrow \dfrac{b}{3} = \dfrac{c}{6} …… (3)
From (2) and (3), we get-
a1=b3=c6\dfrac{a}{{ - 1}} = \dfrac{b}{3} = \dfrac{c}{6}
Let a1=b3=c6=k\dfrac{a}{{ - 1}} = \dfrac{b}{3} = \dfrac{c}{6} = k
a=k,b=3k,c=6k\Rightarrow a = - k,b = 3k,c = 6k
Substitute the values of a,b,ca,b,c in (1), Equation of plane becomes
a(x+2)+b(y+2)+c(z2)=0a\left( {x + 2} \right) + b\left( {y + 2} \right) + c\left( {z - 2} \right) = 0
\Rightarrow k(x+2)+3k(y+2)+6k(z2)=0 - k\left( {x + 2} \right) + 3k\left( {y + 2} \right) + 6k\left( {z - 2} \right) = 0
\Rightarrow k[(x+2)+3(y+2)+6(z2)]=0k\left[ { - \left( {x + 2} \right) + 3\left( {y + 2} \right) + 6\left( {z - 2} \right)} \right] = 0
\Rightarrow (x+2)+3(y+2)+6(z2)=0 - \left( {x + 2} \right) + 3\left( {y + 2} \right) + 6\left( {z - 2} \right) = 0
\Rightarrow x2+3y+6+6z12=0 - x - 2 + 3y + 6 + 6z - 12 = 0
\Rightarrow x+3y+6z=8 - x + 3y + 6z = 8
Divide both sides by 88 to convert the equation in intercept form, i.e., xa+yb+zc=1\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1, where a,b,ca,b,c are the intercepts along x, y and z-axis.
\Rightarrow x8+3y8+6z8=1\dfrac{{ - x}}{8} + \dfrac{{3y}}{8} + \dfrac{{6z}}{8} = 1
\Rightarrow x8+y(83)+z(43)=1\dfrac{x}{{ - 8}} + \dfrac{y}{{\left( {\dfrac{8}{3}} \right)}} + \dfrac{z}{{\left( {\dfrac{4}{3}} \right)}} = 1
Therefore, intercepts are 8,83,43 - 8,\dfrac{8}{3},\dfrac{4}{3}.
Sum of intercepts = 8+83+43 - 8 + \dfrac{8}{3} + \dfrac{4}{3}
=8×3+8+43= \dfrac{{ - 8 \times 3 + 8 + 4}}{3}
=24+123= \dfrac{{ - 24 + 12}}{3}
=123= \dfrac{{ - 12}}{3}
=4= - 4

Hence, option (C) is the correct answer.

Note: The coordinate plane has two axes: the horizontal and vertical axes. These two axes intersect one another at a point called the origin. A coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements.