Solveeit Logo

Question

Question: The sum of the infinite terms of the series \({\cot ^{ - 1}}\left( {{1^2} + \dfrac{3}{4}} \right) + ...

The sum of the infinite terms of the series cot1(12+34)+cot1(22+34)+...{\cot ^{ - 1}}\left( {{1^2} + \dfrac{3}{4}} \right) + {\cot ^{ - 1}}\left( {{2^2} + \dfrac{3}{4}} \right) + ... is equal to
A ) tan11{\tan ^{ - 1}}1
B ) tan12{\tan ^{ - 1}}2
C ) tan13{\tan ^{ - 1}}3
D ) tan14{\tan ^{ - 1}}4

Explanation

Solution

Hint:- We will have to find out the nth term of the given series and reduce it using the inverse trigonometric identities of tan . Once that is done, we will have to use the concept of limits to further solve the question

Complete step-by-step answer:
It has been given that we have to find the sum of infinite terms of the given series cot1(12+34)+cot1(22+34)+...{\cot ^{ - 1}}\left( {{1^2} + \dfrac{3}{4}} \right) + {\cot ^{ - 1}}\left( {{2^2} + \dfrac{3}{4}} \right) + ...
So, we can write the sum as
S=cot1(12+34)+cot1(22+34)+...{S_\infty } = {\cot ^{ - 1}}\left( {{1^2} + \dfrac{3}{4}} \right) + {\cot ^{ - 1}}\left( {{2^2} + \dfrac{3}{4}} \right) + ...\infty
Let us proceed by finding out the nth{n^{th}} term of the given series. Let tn{t_n} denote the nth{n^{th}} term of the given series.
Thus, on observation we can write the nth{n^{th}} term as
tn=cot1(n2+34){t_n} = {\cot ^{ - 1}}\left( {{n^2} + \dfrac{3}{4}} \right)
We know that cot1θ=tan1(1θ){\cot ^{ - 1}}\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{\theta }} \right)
Using this formula, we can rewrite the nth{n^{th}} term as
tn=tan1(1n2+34){t_n} = {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + \dfrac{3}{4}}}} \right)
In order to make use of the formula a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) we will rewrite 34\dfrac{3}{4} as (114)\left( {1 - \dfrac{1}{4}} \right) as 14\dfrac{1}{4} is a perfect square.
Thus, we will get
tn=tan1(11+(n214)){t_n} = {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + \left( {{n^2} - \dfrac{1}{4}} \right)}}} \right)
Now, using the formula a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) , we get
tn=tan1(11+(n+12)(n12)){t_n} = {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + \left( {n + \dfrac{1}{2}} \right)\left( {n - \dfrac{1}{2}} \right)}}} \right)
In order to make use of the formula tan1atan1b=tan1ab1+ab{\tan ^{ - 1}}a - {\tan ^{ - 1}}b = {\tan ^{ - 1}}\dfrac{{a - b}}{{1 + ab}} , we will rewrite the numerator of the nth{n^{th}} term 1=(n+12)(n12)1 = \left( {n + \dfrac{1}{2}} \right) - \left( {n - \dfrac{1}{2}} \right)

Thus, we get
tn=tan1((n+12)(n12)1+(n+12)(n12)){t_n} = {\tan ^{ - 1}}\left( {\dfrac{{\left( {n + \dfrac{1}{2}} \right) - \left( {n - \dfrac{1}{2}} \right)}}{{1 + \left( {n + \dfrac{1}{2}} \right)\left( {n - \dfrac{1}{2}} \right)}}} \right)
Now using the formula tan1atan1b=tan1ab1+ab{\tan ^{ - 1}}a - {\tan ^{ - 1}}b = {\tan ^{ - 1}}\dfrac{{a - b}}{{1 + ab}} , we get the nth{n^{th}} term as
tn=tan1(n+12)tan1(n12){t_n} = {\tan ^{ - 1}}\left( {n + \dfrac{1}{2}} \right) - {\tan ^{ - 1}}\left( {n - \dfrac{1}{2}} \right)
Now we can write the sum of n terms as Sn=t1+t2+t3+...+tn{S_n} = {t_1} + {t_2} + {t_3} + ... + {t_n}
Writing down the individual terms by replacing the corresponding values of n, we get
Sn=tan1(32)tan1(12)+tan1(52)tan1(32)+...+tan1(n+12)tan1(n12){S_n} = {\tan ^{ - 1}}\left( {\dfrac{3}{2}} \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\tan ^{ - 1}}\left( {\dfrac{5}{2}} \right) - {\tan ^{ - 1}}\left( {\dfrac{3}{2}} \right) + ... + {\tan ^{ - 1}}\left( {n + \dfrac{1}{2}} \right) - {\tan ^{ - 1}}\left( {n - \dfrac{1}{2}} \right)
Cancelling out the terms, we get
Sn=tan1(n+12)tan1(12){S_n} = {\tan ^{ - 1}}\left( {n + \dfrac{1}{2}} \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right)
When n,SnSn \to \infty ,{S_n} \to {S_\infty }
Thus, the sum of infinite terms of the given series can be written as
S=limnSn{S_\infty } = {\lim _{n \to \infty }}{S_n}
Replacing Sn{S_n} in the above equation, we get
S=limn[tan1(n+12)tan1(12)]{S_\infty } = {\lim _{n \to \infty }}\left[ {{{\tan }^{ - 1}}\left( {n + \dfrac{1}{2}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right)} \right]
Putting nn \to \infty in the above equation, we get
S=tan1()tan1(12){S_\infty } = {\tan ^{ - 1}}\left( { \to \infty } \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right)
We know that tanπ2\tan \dfrac{\pi }{2} \to \infty . Using this we get
S=π2tan1(12){S_\infty } = \dfrac{\pi }{2} - {\tan ^{ - 1}}\left( {\dfrac{1}{2}} \right)
Using the identity tan1θ+cot1θ=π2{\tan ^{ - 1}}\theta + {\cot ^{ - 1}}\theta = \dfrac{\pi }{2} in the above equation, we get
S=cot1(12){S_\infty } = {\cot ^{ - 1}}\left( {\dfrac{1}{2}} \right)
We know that cot1θ=tan1(1θ){\cot ^{ - 1}}\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{\theta }} \right)
Using this formula, we can rewrite the value of S{S_\infty } as

S=tan12{S_\infty } = {\tan ^{ - 1}}2

The correct option is (B)

Note:- In these types of questions, it is necessary to find out the nth term of the given series and break it into two terms with a minus sign in between. Then on adding, we can cancel out of terms to reduce the number of terms in the summation expression of n terms. For doing the above, we need to take help of the inverse trigonometric identities of tan.