Solveeit Logo

Question

Question: The sum of the infinite series \(\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \frac{4}{5!} + ......\...

The sum of the infinite series 12!+23!+34!+45!+......\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \frac{4}{5!} + ......is.

A

e2e - 2

B

23e1\frac{2}{3}e - 1

C

1

D

3/2

Answer

1

Explanation

Solution

logab\log_{a}b

= logealogeb\log_{e}a - \log_{e}b

logea+logeb\log_{e}a + \log_{e}b

= 15+12.152+13.153+.....=\frac{1}{5} + \frac{1}{2}.\frac{1}{5^{2}} + \frac{1}{3}.\frac{1}{5^{3}} + .....\infty =

= loge52\log_{e}\frac{\sqrt{5}}{2}

= 2loge522\log_{e}\frac{\sqrt{5}}{2} loge[(1+x)1+x(1x)1x]=\log_{e}{}\lbrack(1 + x)^{1 + x}(1 - x)^{1 - x}\rbrack =

= x22+x44+x66+....\frac{x^{2}}{2} + \frac{x^{4}}{4} + \frac{x^{6}}{6} + ....\infty = 1.