Solveeit Logo

Question

Mathematics Question on Sequence and series

The sum of the infinite series
1+56+1262+2263+3564+5165+7066+..1 + \frac{5}{6} + \frac{12}{6^2} + \frac{22}{6^3} + \frac{35}{6^4} +\frac{51}{6^5} + \frac{70}{6^6}+…..
is equal to

A

425216\frac{425}{216}

B

429216\frac{429}{216}

C

288125\frac{288}{125}

D

280125\frac{280}{125}

Answer

288125\frac{288}{125}

Explanation

Solution

The correct answer is (C) : 288125\frac{288}{125}
S=1+56+1262+2263+3564+.....S = 1 + \frac{5}{6} + \frac{12}{6^2} + \frac{22}{6^3} + \frac{35}{6^4} + .....
S6=16+562+1263+2264+......\frac{S}{6} = \frac{1}{6} + \frac{5}{6^2} + \frac{12}{6^3} + \frac{22}{6^4} + ......

On subtraction
56S=1+46+762+1063+1364+......\frac{5}{6} S = 1 + \frac{4}{6} + \frac{7}{6^2} + \frac{10}{6^3} + \frac{13}{6^4} + ......
536S=1+462+763+1064+1365+......\frac{5}{36} S = 1 + \frac{4}{6^2} + \frac{7}{6^3} + \frac{10}{6^4} + \frac{13}{6^5} + ......

On Subtraction
2536S=1+36+362+363+........=85\frac{25}{36} S = 1 + \frac{3}{6} + \frac{3}{6^2} + \frac{3}{6^3} + ........ = \frac{8}{5}
S=288125S = \frac{288 }{125}